/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Theorems about the universe -/ -- see also init.ua import .bool .trunc .lift .pullback open is_trunc bool lift unit eq pi equiv equiv.ops sum sigma fiber prod pullback is_equiv sigma.ops pointed namespace univ universe variables u v variables {A B : Type.{u}} {a : A} {b : B} /- Pathovers -/ definition eq_of_pathover_ua {f : A ≃ B} (p : a =[ua f] b) : f a = b := !cast_ua⁻¹ ⬝ tr_eq_of_pathover p definition pathover_ua {f : A ≃ B} (p : f a = b) : a =[ua f] b := pathover_of_tr_eq (!cast_ua ⬝ p) definition pathover_ua_equiv (f : A ≃ B) : (a =[ua f] b) ≃ (f a = b) := equiv.MK eq_of_pathover_ua pathover_ua abstract begin intro p, unfold [pathover_ua,eq_of_pathover_ua], rewrite [to_right_inv !pathover_equiv_tr_eq, inv_con_cancel_left] end end abstract begin intro p, unfold [pathover_ua,eq_of_pathover_ua], rewrite [con_inv_cancel_left, to_left_inv !pathover_equiv_tr_eq] end end /- Properties which can be disproven for the universe -/ definition not_is_set_type0 : ¬is_set Type₀ := assume H : is_set Type₀, absurd !is_set.elim eq_bnot_ne_idp definition not_is_set_type : ¬is_set Type.{u} := assume H : is_set Type, absurd (is_trunc_is_embedding_closed lift !trunc_index.minus_one_le_succ) not_is_set_type0 definition not_double_negation_elimination0 : ¬Π(A : Type₀), ¬¬A → A := begin intro f, have u : ¬¬bool, by exact (λg, g tt), let H1 := apdo f eq_bnot, note H2 := apo10 H1 u, have p : eq_bnot ▸ u = u, from !is_prop.elim, rewrite p at H2, note H3 := eq_of_pathover_ua H2, esimp at H3, --TODO: use apply ... at after #700 exact absurd H3 (bnot_ne (f bool u)), end definition not_double_negation_elimination : ¬Π(A : Type), ¬¬A → A := begin intro f, apply not_double_negation_elimination0, intro A nna, refine down (f _ _), intro na, have ¬A, begin intro a, exact absurd (up a) na end, exact absurd this nna end definition not_excluded_middle : ¬Π(A : Type), A + ¬A := begin intro f, apply not_double_negation_elimination, intro A nna, induction (f A) with a na, exact a, exact absurd na nna end definition characteristic_map [unfold 2] {B : Type.{u}} (p : Σ(A : Type.{max u v}), A → B) (b : B) : Type.{max u v} := by induction p with A f; exact fiber f b definition characteristic_map_inv [unfold 2] {B : Type.{u}} (P : B → Type.{max u v}) : Σ(A : Type.{max u v}), A → B := ⟨(Σb, P b), pr1⟩ definition sigma_arrow_equiv_arrow_univ [constructor] (B : Type.{u}) : (Σ(A : Type.{max u v}), A → B) ≃ (B → Type.{max u v}) := begin fapply equiv.MK, { exact characteristic_map}, { exact characteristic_map_inv}, { intro P, apply eq_of_homotopy, intro b, esimp, apply ua, apply fiber_pr1}, { intro p, induction p with A f, fapply sigma_eq: esimp, { apply ua, apply sigma_fiber_equiv }, { apply arrow_pathover_constant_right, intro v, rewrite [-cast_def _ v, cast_ua_fn], esimp [sigma_fiber_equiv,equiv.trans,equiv.symm,sigma_comm_equiv,comm_equiv_unc], induction v with b w, induction w with a p, esimp, exact p⁻¹}} end definition is_object_classifier (f : A → B) : pullback_square (pointed_fiber f) (fiber f) f pType.carrier := pullback_square.mk (λa, idp) (is_equiv_of_equiv_of_homotopy (calc A ≃ Σb, fiber f b : sigma_fiber_equiv ... ≃ Σb (v : ΣX, X = fiber f b), v.1 : sigma_equiv_sigma_right (λb, !sigma_equiv_of_is_contr_left) ... ≃ Σb X (p : X = fiber f b), X : sigma_equiv_sigma_right (λb, !sigma_assoc_equiv) ... ≃ Σb X (x : X), X = fiber f b : sigma_equiv_sigma_right (λb, sigma_equiv_sigma_right (λX, !comm_equiv_nondep)) ... ≃ Σb (v : ΣX, X), v.1 = fiber f b : sigma_equiv_sigma_right (λb, !sigma_assoc_equiv⁻¹) ... ≃ Σb (Y : Type*), Y = fiber f b : sigma_equiv_sigma_right (λb, sigma_equiv_sigma (pType.sigma_char)⁻¹ (λv, sigma.rec_on v (λx y, equiv.refl))) ... ≃ Σ(Y : Type*) b, Y = fiber f b : sigma_comm_equiv ... ≃ pullback pType.carrier (fiber f) : !pullback.sigma_char⁻¹ᵉ ) proof λb, idp qed) end univ