/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.nat.div Authors: Jeremy Avigad, Leonardo de Moura Definitions and properties of div, mod, gcd, lcm, coprime. Much of the development follows Isabelle's library. -/ import data.nat.sub tools.fake_simplifier open eq.ops well_founded decidable fake_simplifier prod namespace nat /- div and mod -/ -- auxiliary lemma used to justify div private definition div_rec_lemma {x y : nat} (H : 0 < y ∧ y ≤ x) : x - y < x := and.rec_on H (λ ypos ylex, sub_lt (lt_of_lt_of_le ypos ylex) ypos) private definition div.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat := if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y + 1 else zero definition divide (x y : nat) := fix div.F x y theorem divide_def (x y : nat) : divide x y = if 0 < y ∧ y ≤ x then divide (x - y) y + 1 else 0 := congr_fun (fix_eq div.F x) y notation a div b := divide a b theorem div_zero (a : ℕ) : a div 0 = 0 := divide_def a 0 ⬝ if_neg (!not_and_of_not_left (lt.irrefl 0)) theorem div_eq_zero_of_lt {a b : ℕ} (h : a < b) : a div b = 0 := divide_def a b ⬝ if_neg (!not_and_of_not_right (not_le_of_lt h)) theorem zero_div (b : ℕ) : 0 div b = 0 := divide_def 0 b ⬝ if_neg (λ h, and.rec_on h (λ l r, absurd (lt_of_lt_of_le l r) (lt.irrefl 0))) theorem div_eq_succ_sub_div {a b : ℕ} (h₁ : b > 0) (h₂ : a ≥ b) : a div b = succ ((a - b) div b) := divide_def a b ⬝ if_pos (and.intro h₁ h₂) theorem add_div_self (x : ℕ) {z : ℕ} (H : z > 0) : (x + z) div z = succ (x div z) := calc (x + z) div z = if 0 < z ∧ z ≤ x + z then (x + z - z) div z + 1 else 0 : !divide_def ... = (x + z - z) div z + 1 : if_pos (and.intro H (le_add_left z x)) ... = succ (x div z) : {!add_sub_cancel} theorem add_div_self_left {x : ℕ} (z : ℕ) (H : x > 0) : (x + z) div x = succ (z div x) := !add.comm ▸ !add_div_self H theorem add_mul_div_self {x y z : ℕ} (H : z > 0) : (x + y * z) div z = x div z + y := nat.induction_on y (calc (x + zero * z) div z = (x + zero) div z : zero_mul ... = x div z : add_zero ... = x div z + zero : add_zero) (take y, assume IH : (x + y * z) div z = x div z + y, calc (x + succ y * z) div z = (x + y * z + z) div z : by simp ... = succ ((x + y * z) div z) : !add_div_self H ... = x div z + succ y : by simp) theorem add_mul_div_self_left (x z : ℕ) {y : ℕ} (H : y > 0) : (x + y * z) div y = x div y + z := !mul.comm ▸ add_mul_div_self H theorem mul_div_cancel (m : ℕ) {n : ℕ} (H : n > 0) : m * n div n = m := calc m * n div n = (0 + m * n) div n : zero_add ... = 0 div n + m : add_mul_div_self H ... = 0 + m : zero_div ... = m : zero_add theorem mul_div_cancel_left {m : ℕ} (n : ℕ) (H : m > 0) : m * n div m = n := !mul.comm ▸ !mul_div_cancel H private definition mod.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat := if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y else x definition modulo (x y : nat) := fix mod.F x y notation a mod b := modulo a b theorem modulo_def (x y : nat) : modulo x y = if 0 < y ∧ y ≤ x then modulo (x - y) y else x := congr_fun (fix_eq mod.F x) y theorem mod_zero (a : ℕ) : a mod 0 = a := modulo_def a 0 ⬝ if_neg (!not_and_of_not_left (lt.irrefl 0)) theorem mod_eq_of_lt {a b : ℕ} (h : a < b) : a mod b = a := modulo_def a b ⬝ if_neg (!not_and_of_not_right (not_le_of_lt h)) theorem zero_mod (b : ℕ) : 0 mod b = 0 := modulo_def 0 b ⬝ if_neg (λ h, and.rec_on h (λ l r, absurd (lt_of_lt_of_le l r) (lt.irrefl 0))) theorem mod_eq_sub_mod {a b : ℕ} (h₁ : b > 0) (h₂ : a ≥ b) : a mod b = (a - b) mod b := modulo_def a b ⬝ if_pos (and.intro h₁ h₂) theorem add_mod_self {x z : ℕ} (H : z > 0) : (x + z) mod z = x mod z := calc (x + z) mod z = if 0 < z ∧ z ≤ x + z then (x + z - z) mod z else _ : modulo_def ... = (x + z - z) mod z : if_pos (and.intro H (le_add_left z x)) ... = x mod z : add_sub_cancel theorem add_mod_self_left {x z : ℕ} (H : x > 0) : (x + z) mod x = z mod x := !add.comm ▸ add_mod_self H theorem add_mul_mod_self {x y z : ℕ} (H : z > 0) : (x + y * z) mod z = x mod z := nat.induction_on y (calc (x + zero * z) mod z = (x + zero) mod z : zero_mul ... = x mod z : add_zero) (take y, assume IH : (x + y * z) mod z = x mod z, calc (x + succ y * z) mod z = (x + (y * z + z)) mod z : succ_mul ... = (x + y * z + z) mod z : add.assoc ... = (x + y * z) mod z : add_mod_self H ... = x mod z : IH) theorem add_mul_mod_self_left {x y z : ℕ} (H : y > 0) : (x + y * z) mod y = x mod y := !mul.comm ▸ add_mul_mod_self H theorem mul_mod_left {m n : ℕ} : (m * n) mod n = 0 := by_cases_zero_pos n (by simp) (take n, assume npos : n > 0, (by simp) ▸ (@add_mul_mod_self 0 m _ npos)) theorem mul_mod_right {m n : ℕ} : (m * n) mod m = 0 := !mul.comm ▸ !mul_mod_left theorem mod_lt {x y : ℕ} (H : y > 0) : x mod y < y := nat.case_strong_induction_on x (show 0 mod y < y, from !zero_mod⁻¹ ▸ H) (take x, assume IH : ∀x', x' ≤ x → x' mod y < y, show succ x mod y < y, from by_cases -- (succ x < y) (assume H1 : succ x < y, have H2 : succ x mod y = succ x, from mod_eq_of_lt H1, show succ x mod y < y, from H2⁻¹ ▸ H1) (assume H1 : ¬ succ x < y, have H2 : y ≤ succ x, from le_of_not_lt H1, have H3 : succ x mod y = (succ x - y) mod y, from mod_eq_sub_mod H H2, have H4 : succ x - y < succ x, from sub_lt !succ_pos H, have H5 : succ x - y ≤ x, from le_of_lt_succ H4, show succ x mod y < y, from H3⁻¹ ▸ IH _ H5)) /- properties of div and mod together -/ -- the quotient / remainder theorem theorem eq_div_mul_add_mod {x y : ℕ} : x = x div y * y + x mod y := by_cases_zero_pos y (show x = x div 0 * 0 + x mod 0, from (calc x div 0 * 0 + x mod 0 = 0 + x mod 0 : mul_zero ... = x mod 0 : zero_add ... = x : mod_zero)⁻¹) (take y, assume H : y > 0, show x = x div y * y + x mod y, from nat.case_strong_induction_on x (show 0 = (0 div y) * y + 0 mod y, by simp) (take x, assume IH : ∀x', x' ≤ x → x' = x' div y * y + x' mod y, show succ x = succ x div y * y + succ x mod y, from by_cases -- (succ x < y) (assume H1 : succ x < y, have H2 : succ x div y = 0, from div_eq_zero_of_lt H1, have H3 : succ x mod y = succ x, from mod_eq_of_lt H1, by simp) (assume H1 : ¬ succ x < y, have H2 : y ≤ succ x, from le_of_not_lt H1, have H3 : succ x div y = succ ((succ x - y) div y), from div_eq_succ_sub_div H H2, have H4 : succ x mod y = (succ x - y) mod y, from mod_eq_sub_mod H H2, have H5 : succ x - y < succ x, from sub_lt !succ_pos H, have H6 : succ x - y ≤ x, from le_of_lt_succ H5, (calc succ x div y * y + succ x mod y = succ ((succ x - y) div y) * y + succ x mod y : H3 ... = ((succ x - y) div y) * y + y + succ x mod y : succ_mul ... = ((succ x - y) div y) * y + y + (succ x - y) mod y : H4 ... = ((succ x - y) div y) * y + (succ x - y) mod y + y : add.right_comm ... = succ x - y + y : {!(IH _ H6)⁻¹} ... = succ x : sub_add_cancel H2)⁻¹))) theorem mod_le {x y : ℕ} : x mod y ≤ x := eq_div_mul_add_mod⁻¹ ▸ !le_add_left theorem eq_remainder {y : ℕ} (H : y > 0) {q1 r1 q2 r2 : ℕ} (H1 : r1 < y) (H2 : r2 < y) (H3 : q1 * y + r1 = q2 * y + r2) : r1 = r2 := calc r1 = r1 mod y : by simp ... = (r1 + q1 * y) mod y : (add_mul_mod_self H)⁻¹ ... = (q1 * y + r1) mod y : add.comm ... = (r2 + q2 * y) mod y : by simp ... = r2 mod y : add_mul_mod_self H ... = r2 : by simp theorem eq_quotient {y : ℕ} (H : y > 0) {q1 r1 q2 r2 : ℕ} (H1 : r1 < y) (H2 : r2 < y) (H3 : q1 * y + r1 = q2 * y + r2) : q1 = q2 := have H4 : q1 * y + r2 = q2 * y + r2, from (eq_remainder H H1 H2 H3) ▸ H3, have H5 : q1 * y = q2 * y, from add.cancel_right H4, have H6 : y > 0, from lt_of_le_of_lt !zero_le H1, show q1 = q2, from eq_of_mul_eq_mul_right H6 H5 theorem mul_div_mul_left {z : ℕ} (x y : ℕ) (zpos : z > 0) : (z * x) div (z * y) = x div y := by_cases -- (y = 0) (assume H : y = 0, by simp) (assume H : y ≠ 0, have ypos : y > 0, from pos_of_ne_zero H, have zypos : z * y > 0, from mul_pos zpos ypos, have H1 : (z * x) mod (z * y) < z * y, from mod_lt zypos, have H2 : z * (x mod y) < z * y, from mul_lt_mul_of_pos_left (mod_lt ypos) zpos, eq_quotient zypos H1 H2 (calc ((z * x) div (z * y)) * (z * y) + (z * x) mod (z * y) = z * x : eq_div_mul_add_mod ... = z * (x div y * y + x mod y) : eq_div_mul_add_mod ... = z * (x div y * y) + z * (x mod y) : mul.left_distrib ... = (x div y) * (z * y) + z * (x mod y) : mul.left_comm)) theorem mul_div_mul_right {x z y : ℕ} (zpos : z > 0) : (x * z) div (y * z) = x div y := !mul.comm ▸ !mul.comm ▸ !mul_div_mul_left zpos theorem mul_mod_mul_left (z x y : ℕ) : (z * x) mod (z * y) = z * (x mod y) := or.elim (eq_zero_or_pos z) (assume H : z = 0, calc (z * x) mod (z * y) = (0 * x) mod (z * y) : H ... = 0 mod (z * y) : zero_mul ... = 0 : zero_mod ... = 0 * (x mod y) : zero_mul ... = z * (x mod y) : H) (assume zpos : z > 0, or.elim (eq_zero_or_pos y) (assume H : y = 0, by simp) (assume ypos : y > 0, have zypos : z * y > 0, from mul_pos zpos ypos, have H1 : (z * x) mod (z * y) < z * y, from mod_lt zypos, have H2 : z * (x mod y) < z * y, from mul_lt_mul_of_pos_left (mod_lt ypos) zpos, eq_remainder zypos H1 H2 (calc ((z * x) div (z * y)) * (z * y) + (z * x) mod (z * y) = z * x : eq_div_mul_add_mod ... = z * (x div y * y + x mod y) : eq_div_mul_add_mod ... = z * (x div y * y) + z * (x mod y) : mul.left_distrib ... = (x div y) * (z * y) + z * (x mod y) : mul.left_comm))) theorem mul_mod_mul_right (x z y : ℕ) : (x * z) mod (y * z) = (x mod y) * z := mul.comm z x ▸ mul.comm z y ▸ !mul.comm ▸ !mul_mod_mul_left theorem mod_one (n : ℕ) : n mod 1 = 0 := have H1 : n mod 1 < 1, from mod_lt !succ_pos, eq_zero_of_le_zero (le_of_lt_succ H1) theorem mod_self (n : ℕ) : n mod n = 0 := nat.cases_on n (by simp) (take n, have H : (succ n * 1) mod (succ n * 1) = succ n * (1 mod 1), from !mul_mod_mul_left, (by simp) ▸ H) theorem div_one (n : ℕ) : n div 1 = n := have H : n div 1 * 1 + n mod 1 = n, from eq_div_mul_add_mod⁻¹, (by simp) ▸ H theorem div_self {n : ℕ} (H : n > 0) : n div n = 1 := have H1 : (n * 1) div (n * 1) = 1 div 1, from !mul_div_mul_left H, (by simp) ▸ H1 theorem div_mul_cancel_of_mod_eq_zero {m n : ℕ} (H : m mod n = 0) : m div n * n = m := (calc m = m div n * n + m mod n : eq_div_mul_add_mod ... = m div n * n + 0 : H ... = m div n * n : !add_zero)⁻¹ theorem mul_div_cancel_of_mod_eq_zero {m n : ℕ} (H : m mod n = 0) : n * (m div n) = m := !mul.comm ▸ div_mul_cancel_of_mod_eq_zero H theorem div_lt_of_lt_mul {m n k : ℕ} (H : m < k * n) : m div k < n := lt_of_mul_lt_mul_right (calc m div k * k ≤ m div k * k + m mod k : le_add_right ... = m : eq_div_mul_add_mod ... < k * n : H ... = n * k : nat.mul.comm) theorem div_le_of_le_mul {m n k : ℕ} (H : m ≤ k * n) : m div k ≤ n := or.elim (eq_zero_or_pos k) (assume H1 : k = 0, calc m div k = m div 0 : H1 ... = 0 : div_zero ... ≤ n : zero_le) (assume H1 : k > 0, le_of_mul_le_mul_right (calc m div k * k ≤ m div k * k + m mod k : le_add_right ... = m : eq_div_mul_add_mod ... ≤ k * n : H ... = n * k : nat.mul.comm) H1) theorem div_le (m n : ℕ) : m div n ≤ m := nat.cases_on n (!div_zero⁻¹ ▸ !zero_le) take n, have H : m ≤ succ n * m, from calc m = 1 * m : one_mul ... ≤ succ n * m : mul_le_mul_right (succ_le_succ !zero_le), div_le_of_le_mul H theorem mul_sub_div_of_lt {m n k : ℕ} (H : k < m * n) : (m * n - (k + 1)) div m = n - k div m - 1 := have H1 : k div m < n, from div_lt_of_lt_mul H, have H2 : n - k div m ≥ 1, from le_sub_of_add_le (calc 1 + k div m = succ (k div m) : add.comm ... ≤ n : succ_le_of_lt H1), assert H3 : n - k div m = n - k div m - 1 + 1, from (sub_add_cancel H2)⁻¹, assert H4 : m > 0, from pos_of_ne_zero (assume H': m = 0, not_lt_zero _ (!zero_mul ▸ H' ▸ H)), have H5 : k mod m + 1 ≤ m, from succ_le_of_lt (mod_lt H4), assert H6 : m - (k mod m + 1) < m, from sub_lt_self H4 !succ_pos, calc (m * n - (k + 1)) div m = (m * n - (k div m * m + k mod m + 1)) div m : eq_div_mul_add_mod ... = (m * n - k div m * m - (k mod m + 1)) div m : by rewrite [*sub_sub] ... = ((n - k div m) * m - (k mod m + 1)) div m : by rewrite [mul.comm m, mul_sub_right_distrib] ... = ((n - k div m - 1) * m + m - (k mod m + 1)) div m : by rewrite [H3 at {1}, mul.right_distrib, nat.one_mul] ... = ((n - k div m - 1) * m + (m - (k mod m + 1))) div m : {add_sub_assoc H5 _} ... = (m - (k mod m + 1)) div m + (n - k div m - 1) : by rewrite [add.comm, (add_mul_div_self H4)] ... = n - k div m - 1 : by rewrite [div_eq_zero_of_lt H6, zero_add] /- divides -/ theorem dvd_of_mod_eq_zero {m n : ℕ} (H : n mod m = 0) : m ∣ n := dvd.intro (!mul.comm ▸ div_mul_cancel_of_mod_eq_zero H) theorem mod_eq_zero_of_dvd {m n : ℕ} (H : m ∣ n) : n mod m = 0 := dvd.elim H (take z, assume H1 : n = m * z, H1⁻¹ ▸ !mul_mod_right) theorem dvd_iff_mod_eq_zero (m n : ℕ) : m ∣ n ↔ n mod m = 0 := iff.intro mod_eq_zero_of_dvd dvd_of_mod_eq_zero definition dvd.decidable_rel [instance] : decidable_rel dvd := take m n, decidable_of_decidable_of_iff _ (iff.symm !dvd_iff_mod_eq_zero) theorem div_mul_cancel {m n : ℕ} (H : n ∣ m) : m div n * n = m := div_mul_cancel_of_mod_eq_zero (mod_eq_zero_of_dvd H) theorem mul_div_cancel' {m n : ℕ} (H : n ∣ m) : n * (m div n) = m := !mul.comm ▸ div_mul_cancel H theorem eq_mul_of_div_eq {m n k : ℕ} (H1 : m ∣ n) (H2 : n div m = k) : n = m * k := eq.symm (calc m * k = m * (n div m) : H2 ... = n : mul_div_cancel' H1) theorem eq_div_of_mul_eq {m n k : ℕ} (H1 : k > 0) (H2 : n * k = m) : n = m div k := calc n = n * k div k : mul_div_cancel _ H1 ... = m div k : H2 theorem dvd_of_dvd_add_left {m n₁ n₂ : ℕ} (H₁ : m ∣ n₁ + n₂) (H₂ : m ∣ n₁) : m ∣ n₂ := obtain (c₁ : nat) (Hc₁ : n₁ + n₂ = m * c₁), from H₁, obtain (c₂ : nat) (Hc₂ : n₁ = m * c₂), from H₂, have aux : m * (c₁ - c₂) = n₂, from calc m * (c₁ - c₂) = m * c₁ - m * c₂ : mul_sub_left_distrib ... = n₁ + n₂ - m * c₂ : Hc₁ ... = n₁ + n₂ - n₁ : Hc₂ ... = n₂ : add_sub_cancel_left, dvd.intro aux theorem dvd_of_dvd_add_right {m n1 n2 : ℕ} (H : m ∣ (n1 + n2)) : m ∣ n2 → m ∣ n1 := dvd_of_dvd_add_left (!add.comm ▸ H) theorem dvd_sub {m n1 n2 : ℕ} (H1 : m ∣ n1) (H2 : m ∣ n2) : m ∣ n1 - n2 := by_cases (assume H3 : n1 ≥ n2, have H4 : n1 = n1 - n2 + n2, from (sub_add_cancel H3)⁻¹, show m ∣ n1 - n2, from dvd_of_dvd_add_right (H4 ▸ H1) H2) (assume H3 : ¬ (n1 ≥ n2), have H4 : n1 - n2 = 0, from sub_eq_zero_of_le (le_of_lt (lt_of_not_le H3)), show m ∣ n1 - n2, from H4⁻¹ ▸ dvd_zero _) theorem dvd.antisymm {m n : ℕ} : m ∣ n → n ∣ m → m = n := by_cases_zero_pos n (assume H1, assume H2 : 0 ∣ m, eq_zero_of_zero_dvd H2) (take n, assume Hpos : n > 0, assume H1 : m ∣ n, assume H2 : n ∣ m, obtain k (Hk : n = m * k), from exists_eq_mul_right_of_dvd H1, obtain l (Hl : m = n * l), from exists_eq_mul_right_of_dvd H2, have H3 : n * (l * k) = n, from !mul.assoc ▸ Hl ▸ Hk⁻¹, have H4 : l * k = 1, from eq_one_of_mul_eq_self_right Hpos H3, have H5 : k = 1, from eq_one_of_mul_eq_one_left H4, show m = n, from (mul_one m)⁻¹ ⬝ (H5 ▸ Hk⁻¹)) theorem mul_div_assoc (m : ℕ) {n k : ℕ} (H : k ∣ n) : m * n div k = m * (n div k) := or.elim (eq_zero_or_pos k) (assume H1 : k = 0, calc m * n div k = m * n div 0 : H1 ... = 0 : div_zero ... = m * 0 : mul_zero m ... = m * (n div 0) : div_zero ... = m * (n div k) : H1) (assume H1 : k > 0, have H2 : n = n div k * k, from (div_mul_cancel H)⁻¹, calc m * n div k = m * (n div k * k) div k : H2 ... = m * (n div k) * k div k : mul.assoc ... = m * (n div k) : mul_div_cancel _ H1) theorem dvd_of_mul_dvd_mul_left {m n k : ℕ} (kpos : k > 0) (H : k * m ∣ k * n) : m ∣ n := dvd.elim H (take l, assume H1 : k * n = k * m * l, have H2 : n = m * l, from eq_of_mul_eq_mul_left kpos (H1 ⬝ !mul.assoc), dvd.intro H2⁻¹) theorem dvd_of_mul_dvd_mul_right {m n k : ℕ} (kpos : k > 0) (H : m * k ∣ n * k) : m ∣ n := dvd_of_mul_dvd_mul_left kpos (!mul.comm ▸ !mul.comm ▸ H) theorem div_dvd_div {k m n : ℕ} (H1 : k ∣ m) (H2 : m ∣ n) : m div k ∣ n div k := have H3 : m = m div k * k, from (div_mul_cancel H1)⁻¹, have H4 : n = n div k * k, from (div_mul_cancel (dvd.trans H1 H2))⁻¹, or.elim (eq_zero_or_pos k) (assume H5 : k = 0, have H6: n div k = 0, from (congr_arg _ H5 ⬝ !div_zero), H6⁻¹ ▸ !dvd_zero) (assume H5 : k > 0, dvd_of_mul_dvd_mul_right H5 (H3 ▸ H4 ▸ H2)) /- gcd -/ private definition pair_nat.lt : nat × nat → nat × nat → Prop := measure pr₂ private definition pair_nat.lt.wf : well_founded pair_nat.lt := intro_k (measure.wf pr₂) 20 -- we use intro_k to be able to execute gcd efficiently in the kernel local attribute pair_nat.lt.wf [instance] -- instance will not be saved in .olean local infixl `≺`:50 := pair_nat.lt private definition gcd.lt.dec (x y₁ : nat) : (succ y₁, x mod succ y₁) ≺ (x, succ y₁) := mod_lt (succ_pos y₁) definition gcd.F (p₁ : nat × nat) : (Π p₂ : nat × nat, p₂ ≺ p₁ → nat) → nat := prod.cases_on p₁ (λx y, nat.cases_on y (λ f, x) (λ y₁ (f : Πp₂, p₂ ≺ (x, succ y₁) → nat), f (succ y₁, x mod succ y₁) !gcd.lt.dec)) definition gcd (x y : nat) := fix gcd.F (pair x y) theorem gcd_zero_right (x : nat) : gcd x 0 = x := well_founded.fix_eq gcd.F (x, 0) theorem gcd_succ (x y : nat) : gcd x (succ y) = gcd (succ y) (x mod succ y) := well_founded.fix_eq gcd.F (x, succ y) theorem gcd_one_right (n : ℕ) : gcd n 1 = 1 := calc gcd n 1 = gcd 1 (n mod 1) : gcd_succ n zero ... = gcd 1 0 : mod_one ... = 1 : gcd_zero_right theorem gcd_def (x y : ℕ) : gcd x y = if y = 0 then x else gcd y (x mod y) := nat.cases_on y (calc gcd x 0 = x : gcd_zero_right x ... = if 0 = 0 then x else gcd zero (x mod zero) : (if_pos rfl)⁻¹) (λy₁, calc gcd x (succ y₁) = gcd (succ y₁) (x mod succ y₁) : gcd_succ x y₁ ... = if succ y₁ = 0 then x else gcd (succ y₁) (x mod succ y₁) : (if_neg (succ_ne_zero y₁))⁻¹) theorem gcd_self (n : ℕ) : gcd n n = n := nat.cases_on n rfl (λn₁, calc gcd (succ n₁) (succ n₁) = gcd (succ n₁) (succ n₁ mod succ n₁) : gcd_succ (succ n₁) n₁ ... = gcd (succ n₁) 0 : mod_self (succ n₁) ... = succ n₁ : gcd_zero_right) theorem gcd_zero_left (n : nat) : gcd 0 n = n := nat.cases_on n rfl (λ n₁, calc gcd 0 (succ n₁) = gcd (succ n₁) (0 mod succ n₁) : gcd_succ ... = gcd (succ n₁) 0 : zero_mod ... = (succ n₁) : gcd_zero_right) theorem gcd_rec_of_pos (m : ℕ) {n : ℕ} (H : n > 0) : gcd m n = gcd n (m mod n) := gcd_def m n ⬝ if_neg (ne_zero_of_pos H) theorem gcd_rec (m n : ℕ) : gcd m n = gcd n (m mod n) := by_cases_zero_pos n (calc gcd m 0 = m : gcd_zero_right ... = gcd 0 m : gcd_zero_left ... = gcd 0 (m mod 0) : mod_zero) (take n, assume H : 0 < n, gcd_rec_of_pos m H) theorem gcd.induction {P : ℕ → ℕ → Prop} (m n : ℕ) (H0 : ∀m, P m 0) (H1 : ∀m n, 0 < n → P n (m mod n) → P m n) : P m n := let Q : nat × nat → Prop := λ p : nat × nat, P (pr₁ p) (pr₂ p) in have aux : Q (m, n), from well_founded.induction (m, n) (λp, prod.cases_on p (λm n, nat.cases_on n (λ ih, show P (pr₁ (m, 0)) (pr₂ (m, 0)), from H0 m) (λ n₁ (ih : ∀p₂, p₂ ≺ (m, succ n₁) → P (pr₁ p₂) (pr₂ p₂)), have hlt₁ : 0 < succ n₁, from succ_pos n₁, have hlt₂ : (succ n₁, m mod succ n₁) ≺ (m, succ n₁), from gcd.lt.dec _ _, have hp : P (succ n₁) (m mod succ n₁), from ih _ hlt₂, show P m (succ n₁), from H1 m (succ n₁) hlt₁ hp))), aux theorem gcd_dvd (m n : ℕ) : (gcd m n ∣ m) ∧ (gcd m n ∣ n) := gcd.induction m n (take m, show (gcd m 0 ∣ m) ∧ (gcd m 0 ∣ 0), by simp) (take m n, assume npos : 0 < n, assume IH : (gcd n (m mod n) ∣ n) ∧ (gcd n (m mod n) ∣ (m mod n)), have H : (gcd n (m mod n) ∣ (m div n * n + m mod n)), from dvd_add (dvd.trans (and.elim_left IH) !dvd_mul_left) (and.elim_right IH), have H1 : (gcd n (m mod n) ∣ m), from eq_div_mul_add_mod⁻¹ ▸ H, have gcd_eq : gcd n (m mod n) = gcd m n, from !gcd_rec⁻¹, show (gcd m n ∣ m) ∧ (gcd m n ∣ n), from gcd_eq ▸ (and.intro H1 (and.elim_left IH))) theorem gcd_dvd_left (m n : ℕ) : gcd m n ∣ m := and.elim_left !gcd_dvd theorem gcd_dvd_right (m n : ℕ) : gcd m n ∣ n := and.elim_right !gcd_dvd theorem dvd_gcd {m n k : ℕ} : k ∣ m → k ∣ n → k ∣ gcd m n := gcd.induction m n (take m, assume (h₁ : k ∣ m) (h₂ : k ∣ 0), show k ∣ gcd m 0, from !gcd_zero_right⁻¹ ▸ h₁) (take m n, assume npos : n > 0, assume IH : k ∣ n → k ∣ m mod n → k ∣ gcd n (m mod n), assume H1 : k ∣ m, assume H2 : k ∣ n, have H3 : k ∣ m div n * n + m mod n, from eq_div_mul_add_mod ▸ H1, have H4 : k ∣ m mod n, from nat.dvd_of_dvd_add_left H3 (dvd.trans H2 (by simp)), have gcd_eq : gcd n (m mod n) = gcd m n, from !gcd_rec⁻¹, show k ∣ gcd m n, from gcd_eq ▸ IH H2 H4) theorem gcd.comm (m n : ℕ) : gcd m n = gcd n m := dvd.antisymm (dvd_gcd !gcd_dvd_right !gcd_dvd_left) (dvd_gcd !gcd_dvd_right !gcd_dvd_left) theorem gcd.assoc (m n k : ℕ) : gcd (gcd m n) k = gcd m (gcd n k) := dvd.antisymm (dvd_gcd (dvd.trans !gcd_dvd_left !gcd_dvd_left) (dvd_gcd (dvd.trans !gcd_dvd_left !gcd_dvd_right) !gcd_dvd_right)) (dvd_gcd (dvd_gcd !gcd_dvd_left (dvd.trans !gcd_dvd_right !gcd_dvd_left)) (dvd.trans !gcd_dvd_right !gcd_dvd_right)) theorem gcd_one_left (m : ℕ) : gcd 1 m = 1 := !gcd.comm ⬝ !gcd_one_right theorem gcd_mul_left (m n k : ℕ) : gcd (m * n) (m * k) = m * gcd n k := gcd.induction n k (take n, calc gcd (m * n) (m * 0) = gcd (m * n) 0 : mul_zero ... = m * n : gcd_zero_right ... = m * gcd n 0 : gcd_zero_right) (take n k, assume H : 0 < k, assume IH : gcd (m * k) (m * (n mod k)) = m * gcd k (n mod k), calc gcd (m * n) (m * k) = gcd (m * k) (m * n mod (m * k)) : !gcd_rec ... = gcd (m * k) (m * (n mod k)) : mul_mod_mul_left ... = m * gcd k (n mod k) : IH ... = m * gcd n k : !gcd_rec) theorem gcd_mul_right (m n k : ℕ) : gcd (m * n) (k * n) = gcd m k * n := calc gcd (m * n) (k * n) = gcd (n * m) (k * n) : mul.comm ... = gcd (n * m) (n * k) : mul.comm ... = n * gcd m k : gcd_mul_left ... = gcd m k * n : mul.comm theorem gcd_pos_of_pos_left {m : ℕ} (n : ℕ) (mpos : m > 0) : gcd m n > 0 := pos_of_dvd_of_pos !gcd_dvd_left mpos theorem gcd_pos_of_pos_right (m : ℕ) {n : ℕ} (npos : n > 0) : gcd m n > 0 := pos_of_dvd_of_pos !gcd_dvd_right npos theorem eq_zero_of_gcd_eq_zero_left {m n : ℕ} (H : gcd m n = 0) : m = 0 := or.elim (eq_zero_or_pos m) (assume H1, H1) (assume H1 : m > 0, absurd H⁻¹ (ne_of_lt (!gcd_pos_of_pos_left H1))) theorem eq_zero_of_gcd_eq_zero_right {m n : ℕ} (H : gcd m n = 0) : n = 0 := eq_zero_of_gcd_eq_zero_left (!gcd.comm ▸ H) theorem gcd_div {m n k : ℕ} (H1 : (k ∣ m)) (H2 : (k ∣ n)) : gcd (m div k) (n div k) = gcd m n div k := or.elim (eq_zero_or_pos k) (assume H3 : k = 0, calc gcd (m div k) (n div k) = gcd (m div 0) (n div k) : H3 ... = gcd 0 (n div k) : div_zero ... = n div k : gcd_zero_left ... = n div 0 : H3 ... = 0 : div_zero ... = gcd m n div 0 : div_zero ... = gcd m n div k : H3) (assume H3 : k > 0, eq_div_of_mul_eq H3 (calc gcd (m div k) (n div k) * k = gcd (m div k * k) (n div k * k) : gcd_mul_right ... = gcd m (n div k * k) : div_mul_cancel H1 ... = gcd m n : div_mul_cancel H2)) theorem gcd_dvd_gcd_mul_left (m n k : ℕ) : gcd m n ∣ gcd (k * m) n := dvd_gcd (dvd.trans !gcd_dvd_left !dvd_mul_left) !gcd_dvd_right theorem gcd_dvd_gcd_mul_right (m n k : ℕ) : gcd m n ∣ gcd (m * k) n := !mul.comm ▸ !gcd_dvd_gcd_mul_left theorem gcd_dvd_gcd_mul_left_right (m n k : ℕ) : gcd m n ∣ gcd m (k * n) := dvd_gcd !gcd_dvd_left (dvd.trans !gcd_dvd_right !dvd_mul_left) theorem gcd_dvd_gcd_mul_right_right (m n k : ℕ) : gcd m n ∣ gcd m (n * k) := !mul.comm ▸ !gcd_dvd_gcd_mul_left_right /- lcm -/ definition lcm (m n : ℕ) : ℕ := m * n div (gcd m n) theorem lcm.comm (m n : ℕ) : lcm m n = lcm n m := calc lcm m n = m * n div gcd m n : rfl ... = n * m div gcd m n : mul.comm ... = n * m div gcd n m : gcd.comm ... = lcm n m : rfl theorem lcm_zero_left (m : ℕ) : lcm 0 m = 0 := calc lcm 0 m = 0 * m div gcd 0 m : rfl ... = 0 div gcd 0 m : zero_mul ... = 0 : zero_div theorem lcm_zero_right (m : ℕ) : lcm m 0 = 0 := !lcm.comm ▸ !lcm_zero_left theorem lcm_one_left (m : ℕ) : lcm 1 m = m := calc lcm 1 m = 1 * m div gcd 1 m : rfl ... = m div gcd 1 m : one_mul ... = m div 1 : gcd_one_left ... = m : div_one theorem lcm_one_right (m : ℕ) : lcm m 1 = m := !lcm.comm ▸ !lcm_one_left theorem lcm_self (m : ℕ) : lcm m m = m := have H : m * m div m = m, from by_cases_zero_pos m !div_zero (take m, assume H1 : m > 0, !mul_div_cancel H1), calc lcm m m = m * m div gcd m m : rfl ... = m * m div m : gcd_self ... = m : H theorem dvd_lcm_left (m n : ℕ) : m ∣ lcm m n := have H : lcm m n = m * (n div gcd m n), from mul_div_assoc _ !gcd_dvd_right, dvd.intro H⁻¹ theorem dvd_lcm_right (m n : ℕ) : n ∣ lcm m n := !lcm.comm ▸ !dvd_lcm_left theorem gcd_mul_lcm (m n : ℕ) : gcd m n * lcm m n = m * n := eq.symm (eq_mul_of_div_eq (dvd.trans !gcd_dvd_left !dvd_mul_right) rfl) theorem lcm_dvd {m n k : ℕ} (H1 : m ∣ k) (H2 : n ∣ k) : lcm m n ∣ k := or.elim (eq_zero_or_pos k) (assume kzero : k = 0, !kzero⁻¹ ▸ !dvd_zero) (assume kpos : k > 0, have mpos : m > 0, from pos_of_dvd_of_pos H1 kpos, have npos : n > 0, from pos_of_dvd_of_pos H2 kpos, have gcd_pos : gcd m n > 0, from !gcd_pos_of_pos_left mpos, obtain p (km : k = m * p), from exists_eq_mul_right_of_dvd H1, obtain q (kn : k = n * q), from exists_eq_mul_right_of_dvd H2, have ppos : p > 0, from pos_of_mul_pos_left (km ▸ kpos), have qpos : q > 0, from pos_of_mul_pos_left (kn ▸ kpos), have H3 : p * q * (m * n * gcd p q) = p * q * (gcd m n * k), from calc p * q * (m * n * gcd p q) = p * (q * (m * n * gcd p q)) : mul.assoc ... = p * (q * (m * (n * gcd p q))) : mul.assoc ... = p * (m * (q * (n * gcd p q))) : mul.left_comm ... = p * m * (q * (n * gcd p q)) : mul.assoc ... = p * m * (q * n * gcd p q) : mul.assoc ... = m * p * (q * n * gcd p q) : mul.comm ... = k * (q * n * gcd p q) : km ... = k * (n * q * gcd p q) : mul.comm ... = k * (k * gcd p q) : kn ... = k * gcd (k * p) (k * q) : gcd_mul_left ... = k * gcd (n * q * p) (k * q) : kn ... = k * gcd (n * q * p) (m * p * q) : km ... = k * gcd (n * (q * p)) (m * p * q) : mul.assoc ... = k * gcd (n * (q * p)) (m * (p * q)) : mul.assoc ... = k * gcd (n * (p * q)) (m * (p * q)) : mul.comm ... = k * (gcd n m * (p * q)) : gcd_mul_right ... = gcd n m * (p * q) * k : mul.comm ... = p * q * gcd n m * k : mul.comm ... = p * q * (gcd n m * k) : mul.assoc ... = p * q * (gcd m n * k) : gcd.comm, have H4 : m * n * gcd p q = gcd m n * k, from !eq_of_mul_eq_mul_left (mul_pos ppos qpos) H3, have H5 : gcd m n * (lcm m n * gcd p q) = gcd m n * k, from !mul.assoc ▸ !gcd_mul_lcm⁻¹ ▸ H4, have H6 : lcm m n * gcd p q = k, from !eq_of_mul_eq_mul_left gcd_pos H5, dvd.intro H6) theorem lcm_assoc (m n k : ℕ) : lcm (lcm m n) k = lcm m (lcm n k) := dvd.antisymm (lcm_dvd (lcm_dvd !dvd_lcm_left (dvd.trans !dvd_lcm_left !dvd_lcm_right)) (dvd.trans !dvd_lcm_right !dvd_lcm_right)) (lcm_dvd (dvd.trans !dvd_lcm_left !dvd_lcm_left) (lcm_dvd (dvd.trans !dvd_lcm_right !dvd_lcm_left) !dvd_lcm_right)) /- coprime -/ definition coprime [reducible] (m n : ℕ) : Prop := gcd m n = 1 theorem coprime_swap {m n : ℕ} (H : coprime n m) : coprime m n := !gcd.comm ▸ H theorem dvd_of_coprime_of_dvd_mul_right {m n k : ℕ} (H1 : coprime k n) (H2 : k ∣ m * n) : k ∣ m := have H3 : gcd (m * k) (m * n) = m, from calc gcd (m * k) (m * n) = m * gcd k n : gcd_mul_left ... = m * 1 : H1 ... = m : mul_one, have H4 : (k ∣ gcd (m * k) (m * n)), from dvd_gcd !dvd_mul_left H2, H3 ▸ H4 theorem dvd_of_coprime_of_dvd_mul_left {m n k : ℕ} (H1 : coprime k m) (H2 : k ∣ m * n) : k ∣ n := dvd_of_coprime_of_dvd_mul_right H1 (!mul.comm ▸ H2) theorem gcd_mul_left_cancel_of_coprime {k : ℕ} (m : ℕ) {n : ℕ} (H : coprime k n) : gcd (k * m) n = gcd m n := have H1 : coprime (gcd (k * m) n) k, from calc gcd (gcd (k * m) n) k = gcd k (gcd (k * m) n) : gcd.comm ... = gcd (gcd k (k * m)) n : gcd.assoc ... = gcd (gcd (k * 1) (k * m)) n : mul_one ... = gcd (k * gcd 1 m) n : gcd_mul_left ... = gcd (k * 1) n : gcd_one_left ... = gcd k n : mul_one ... = 1 : H, dvd.antisymm (dvd_gcd (dvd_of_coprime_of_dvd_mul_left H1 !gcd_dvd_left) !gcd_dvd_right) (dvd_gcd (dvd.trans !gcd_dvd_left !dvd_mul_left) !gcd_dvd_right) theorem gcd_mul_right_cancel_of_coprime (m : ℕ) {k n : ℕ} (H : coprime k n) : gcd (m * k) n = gcd m n := !mul.comm ▸ !gcd_mul_left_cancel_of_coprime H theorem gcd_mul_left_cancel_of_coprime_right {k m : ℕ} (n : ℕ) (H : coprime k m) : gcd m (k * n) = gcd m n := !gcd.comm ▸ !gcd.comm ▸ !gcd_mul_left_cancel_of_coprime H theorem gcd_mul_right_cancel_of_coprime_right {k m : ℕ} (n : ℕ) (H : coprime k m) : gcd m (n * k) = gcd m n := !gcd.comm ▸ !gcd.comm ▸ !gcd_mul_right_cancel_of_coprime H theorem coprime_div_gcd_div_gcd {m n : ℕ} (H : gcd m n > 0) : coprime (m div gcd m n) (n div gcd m n) := calc gcd (m div gcd m n) (n div gcd m n) = gcd m n div gcd m n : gcd_div !gcd_dvd_left !gcd_dvd_right ... = 1 : div_self H theorem exists_coprime {m n : ℕ} (H : gcd m n > 0) : exists m' n', coprime m' n' ∧ m = m' * gcd m n ∧ n = n' * gcd m n := have H1 : m = (m div gcd m n) * gcd m n, from (div_mul_cancel !gcd_dvd_left)⁻¹, have H2 : n = (n div gcd m n) * gcd m n, from (div_mul_cancel !gcd_dvd_right)⁻¹, exists.intro _ (exists.intro _ (and.intro (coprime_div_gcd_div_gcd H) (and.intro H1 H2))) theorem coprime_mul {m n k : ℕ} (H1 : coprime m k) (H2 : coprime n k) : coprime (m * n) k := calc gcd (m * n) k = gcd n k : !gcd_mul_left_cancel_of_coprime H1 ... = 1 : H2 theorem coprime_mul_right {k m n : ℕ} (H1 : coprime k m) (H2 : coprime k n) : coprime k (m * n) := coprime_swap (coprime_mul (coprime_swap H1) (coprime_swap H2)) theorem coprime_of_coprime_mul_left {k m n : ℕ} (H : coprime (k * m) n) : coprime m n := have H1 : (gcd m n ∣ gcd (k * m) n), from !gcd_dvd_gcd_mul_left, eq_one_of_dvd_one (H ▸ H1) theorem coprime_of_coprime_mul_right {k m n : ℕ} (H : coprime (m * k) n) : coprime m n := coprime_of_coprime_mul_left (!mul.comm ▸ H) theorem coprime_of_coprime_mul_left_right {k m n : ℕ} (H : coprime m (k * n)) : coprime m n := coprime_swap (coprime_of_coprime_mul_left (coprime_swap H)) theorem coprime_of_coprime_mul_right_right {k m n : ℕ} (H : coprime m (n * k)) : coprime m n := coprime_of_coprime_mul_left_right (!mul.comm ▸ H) theorem exists_eq_prod_and_dvd_and_dvd {m n k} (H : k ∣ m * n) : ∃ m' n', k = m' * n' ∧ m' ∣ m ∧ n' ∣ n := or.elim (eq_zero_or_pos (gcd k m)) (assume H1 : gcd k m = 0, have H2 : k = 0, from eq_zero_of_gcd_eq_zero_left H1, have H3 : m = 0, from eq_zero_of_gcd_eq_zero_right H1, have H4 : k = 0 * n, from H2 ⬝ !zero_mul⁻¹, have H5 : 0 ∣ m, from H3⁻¹ ▸ !dvd.refl, have H6 : n ∣ n, from !dvd.refl, exists.intro _ (exists.intro _ (and.intro H4 (and.intro H5 H6)))) (assume H1 : gcd k m > 0, have H2 : gcd k m ∣ k, from !gcd_dvd_left, have H3 : k div gcd k m ∣ (m * n) div gcd k m, from div_dvd_div H2 H, have H4 : (m * n) div gcd k m = (m div gcd k m) * n, from calc m * n div gcd k m = n * m div gcd k m : mul.comm ... = n * (m div gcd k m) : !mul_div_assoc !gcd_dvd_right ... = m div gcd k m * n : mul.comm, have H5 : k div gcd k m ∣ (m div gcd k m) * n, from H4 ▸ H3, have H6 : coprime (k div gcd k m) (m div gcd k m), from coprime_div_gcd_div_gcd H1, have H7 : k div gcd k m ∣ n, from dvd_of_coprime_of_dvd_mul_left H6 H5, have H8 : k = gcd k m * (k div gcd k m), from (mul_div_cancel' H2)⁻¹, exists.intro _ (exists.intro _ (and.intro H8 (and.intro !gcd_dvd_right H7)))) end nat