-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn import general_notation .prop -- logic.eq -- ==================== -- Equality. -- eq -- -- inductive eq {A : Type} (a : A) : A → Prop := refl : eq a a notation a = b := eq a b definition rfl {A : Type} {a : A} := eq.refl a -- proof irrelevance is built in theorem proof_irrel {a : Prop} (H₁ H₂ : a) : H₁ = H₂ := rfl namespace eq variables {A : Type} variables {a b c : A} theorem id_refl (H₁ : a = a) : H₁ = (eq.refl a) := rfl theorem irrel (H₁ H₂ : a = b) : H₁ = H₂ := !proof_irrel theorem subst {P : A → Prop} (H₁ : a = b) (H₂ : P a) : P b := rec H₂ H₁ theorem trans (H₁ : a = b) (H₂ : b = c) : a = c := subst H₂ H₁ theorem symm (H : a = b) : b = a := subst H (refl a) namespace ops notation H `⁻¹` := symm H notation H1 ⬝ H2 := trans H1 H2 notation H1 ▸ H2 := subst H1 H2 end ops end eq calc_subst eq.subst calc_refl eq.refl calc_trans eq.trans open eq.ops namespace eq definition drec_on {A : Type} {a a' : A} {B : Πa' : A, a = a' → Type} (H₁ : a = a') (H₂ : B a (refl a)) : B a' H₁ := eq.rec (λH₁ : a = a, show B a H₁, from H₂) H₁ H₁ theorem rec_on_id {A : Type} {a : A} {B : Πa' : A, a = a' → Type} (H : a = a) (b : B a H) : drec_on H b = b := rfl theorem rec_on_constant {A : Type} {a a' : A} {B : Type} (H : a = a') (b : B) : drec_on H b = b := drec_on H (λ(H' : a = a), rec_on_id H' b) H theorem rec_on_constant2 {A : Type} {a₁ a₂ a₃ a₄ : A} {B : Type} (H₁ : a₁ = a₂) (H₂ : a₃ = a₄) (b : B) : drec_on H₁ b = drec_on H₂ b := rec_on_constant H₁ b ⬝ (rec_on_constant H₂ b)⁻¹ theorem rec_on_irrel {A B : Type} {a a' : A} {f : A → B} {D : B → Type} (H : a = a') (H' : f a = f a') (b : D (f a)) : drec_on H b = drec_on H' b := drec_on H (λ(H : a = a) (H' : f a = f a), rec_on_id H b ⬝ rec_on_id H' b⁻¹) H H' theorem rec_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : rec b H = b := rfl theorem rec_on_compose {A : Type} {a b c : A} {P : A → Type} (H₁ : a = b) (H₂ : b = c) (u : P a) : drec_on H₂ (drec_on H₁ u) = drec_on (trans H₁ H₂) u := (show ∀ H₂ : b = c, drec_on H₂ (drec_on H₁ u) = drec_on (trans H₁ H₂) u, from drec_on H₂ (take (H₂ : b = b), rec_on_id H₂ _)) H₂ end eq open eq section variables {A B C D E F : Type} variables {a a' : A} {b b' : B} {c c' : C} {d d' : D} {e e' : E} {f f' : F} theorem congr_fun {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a := H ▸ rfl theorem congr_arg (f : A → B) (H : a = a') : f a = f a' := H ▸ rfl theorem congr {f g : A → B} (H₁ : f = g) (H₂ : a = a') : f a = g a' := H₁ ▸ H₂ ▸ rfl theorem congr_arg2 (f : A → B → C) (Ha : a = a') (Hb : b = b') : f a b = f a' b' := congr (congr_arg f Ha) Hb theorem congr_arg3 (f : A → B → C → D) (Ha : a = a') (Hb : b = b') (Hc : c = c') : f a b c = f a' b' c' := congr (congr_arg2 f Ha Hb) Hc theorem congr_arg4 (f : A → B → C → D → E) (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') : f a b c d = f a' b' c' d' := congr (congr_arg3 f Ha Hb Hc) Hd theorem congr_arg5 (f : A → B → C → D → E → F) (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') (He : e = e') : f a b c d e = f a' b' c' d' e' := congr (congr_arg4 f Ha Hb Hc Hd) He theorem congr2 (f f' : A → B → C) (Hf : f = f') (Ha : a = a') (Hb : b = b') : f a b = f' a' b' := Hf ▸ congr_arg2 f Ha Hb theorem congr3 (f f' : A → B → C → D) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') : f a b c = f' a' b' c' := Hf ▸ congr_arg3 f Ha Hb Hc theorem congr4 (f f' : A → B → C → D → E) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') : f a b c d = f' a' b' c' d' := Hf ▸ congr_arg4 f Ha Hb Hc Hd theorem congr5 (f f' : A → B → C → D → E → F) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') (He : e = e') : f a b c d e = f' a' b' c' d' e' := Hf ▸ congr_arg5 f Ha Hb Hc Hd He end section variables {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type} {R : Type} variables {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂} {d₁ : D a₁ b₁ c₁} {d₂ : D a₂ b₂ c₂} theorem congr_arg2_dep (f : Πa, B a → R) (H₁ : a₁ = a₂) (H₂ : eq.drec_on H₁ b₁ = b₂) : f a₁ b₁ = f a₂ b₂ := eq.drec_on H₁ (λ (b₂ : B a₁) (H₁ : a₁ = a₁) (H₂ : eq.drec_on H₁ b₁ = b₂), calc f a₁ b₁ = f a₁ (eq.drec_on H₁ b₁) : {(eq.rec_on_id H₁ b₁)⁻¹} ... = f a₁ b₂ : {H₂}) b₂ H₁ H₂ theorem congr_arg3_dep (f : Πa b, C a b → R) (H₁ : a₁ = a₂) (H₂ : eq.drec_on H₁ b₁ = b₂) (H₃ : eq.drec_on (congr_arg2_dep C H₁ H₂) c₁ = c₂) : f a₁ b₁ c₁ = f a₂ b₂ c₂ := eq.drec_on H₁ (λ (b₂ : B a₁) (H₂ : b₁ = b₂) (c₂ : C a₁ b₂) (H₃ : (drec_on (congr_arg2_dep C (refl a₁) H₂) c₁) = c₂), have H₃' : eq.drec_on H₂ c₁ = c₂, from rec_on_irrel H₂ _ c₁ ⬝ H₃, congr_arg2_dep (f a₁) H₂ H₃') b₂ H₂ c₂ H₃ -- for the moment the following theorem is commented out, because it takes long to prove -- theorem congr_arg4_dep (f : Πa b c, D a b c → R) (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) -- (H₃ : eq.rec_on (congr_arg2_dep C H₁ H₂) c₁ = c₂) -- (H₄ : eq.rec_on (congr_arg3_dep D H₁ H₂ H₃) d₁ = d₂) : f a₁ b₁ c₁ d₁ = f a₂ b₂ c₂ d₂ := -- eq.rec_on H₁ -- (λ b₂ H₂ c₂ H₃ d₂ (H₄ : _), -- have H₃' [visible] : eq.rec_on H₂ c₁ = c₂, from rec_on_irrel H₂ _ c₁ ⬝ H₃, -- have H₄' : rec_on (congr_arg2_dep (D a₁) H₂ H₃') d₁ = d₂, from rec_on_irrel _ _ d₁ ⬝ H₄, -- congr_arg3_dep (f a₁) H₂ H₃' H₄') -- b₂ H₂ c₂ H₃ d₂ H₄ end section variables {A B : Type} {C : A → B → Type} {R : Type} variables {a₁ a₂ : A} {b₁ b₂ : B} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂} theorem congr_arg3_ndep_dep (f : Πa b, C a b → R) (H₁ : a₁ = a₂) (H₂ : b₁ = b₂) (H₃ : eq.drec_on (congr_arg2 C H₁ H₂) c₁ = c₂) : f a₁ b₁ c₁ = f a₂ b₂ c₂ := congr_arg3_dep f H₁ (rec_on_constant H₁ b₁ ⬝ H₂) H₃ end theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀x, f x = g x := take x, congr_fun H x section variables {a b c : Prop} theorem eqmp (H₁ : a = b) (H₂ : a) : b := H₁ ▸ H₂ theorem eqmpr (H₁ : a = b) (H₂ : b) : a := H₁⁻¹ ▸ H₂ theorem eq_true_elim (H : a = true) : a := H⁻¹ ▸ trivial theorem eq_false_elim (H : a = false) : ¬a := assume Ha : a, H ▸ Ha theorem imp_trans (H₁ : a → b) (H₂ : b → c) : a → c := assume Ha, H₂ (H₁ Ha) theorem imp_eq_trans (H₁ : a → b) (H₂ : b = c) : a → c := assume Ha, H₂ ▸ (H₁ Ha) theorem eq_imp_trans (H₁ : a = b) (H₂ : b → c) : a → c := assume Ha, H₂ (H₁ ▸ Ha) end -- ne -- -- definition ne {A : Type} (a b : A) := ¬(a = b) notation a ≠ b := ne a b namespace ne variable {A : Type} variables {a b : A} theorem intro : (a = b → false) → a ≠ b := assume H, H theorem elim : a ≠ b → a = b → false := assume H₁ H₂, H₁ H₂ theorem irrefl : a ≠ a → false := assume H, H rfl theorem symm : a ≠ b → b ≠ a := assume (H : a ≠ b) (H₁ : b = a), H (H₁⁻¹) end ne section variables {A : Type} {a b c : A} theorem a_neq_a_elim : a ≠ a → false := assume H, H rfl theorem eq_ne_trans : a = b → b ≠ c → a ≠ c := assume H₁ H₂, H₁⁻¹ ▸ H₂ theorem ne_eq_trans : a ≠ b → b = c → a ≠ c := assume H₁ H₂, H₂ ▸ H₁ end calc_trans eq_ne_trans calc_trans ne_eq_trans section variables {p : Prop} theorem p_ne_false : p → p ≠ false := assume (Hp : p) (Heq : p = false), Heq ▸ Hp theorem p_ne_true : ¬p → p ≠ true := assume (Hnp : ¬p) (Heq : p = true), absurd trivial (Heq ▸ Hnp) end theorem true_ne_false : ¬true = false := assume H : true = false, H ▸ trivial inductive subsingleton [class] (A : Type) : Prop := intro : (∀ a b : A, a = b) -> subsingleton A namespace subsingleton definition elim {A : Type} (H : subsingleton A) : ∀(a b : A), a = b := rec (fun p, p) H end subsingleton protected definition prop.subsingleton [instance] (P : Prop) : subsingleton P := subsingleton.intro (λa b, !proof_irrel)