/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Jakob von Raumer Sum precategory and (TODO) category -/ import ..category ..functor types.sum open eq sum is_trunc functor lift namespace category --set_option pp.universes true definition sum_hom.{u v w x} [unfold 5 6] {obC : Type.{u}} {obD : Type.{v}} (C : precategory.{u w} obC) (D : precategory.{v x} obD) : obC + obD → obC + obD → Type.{max w x} := sum.rec (λc, sum.rec (λc', lift (c ⟶ c')) (λd, lift empty)) (λd, sum.rec (λc, lift empty) (λd', lift (d ⟶ d'))) theorem is_hset_sum_hom {obC : Type} {obD : Type} (C : precategory obC) (D : precategory obD) (x y : obC + obD) : is_hset (sum_hom C D x y) := by induction x: induction y: esimp at *: exact _ local attribute is_hset_sum_hom [instance] definition precategory_sum [constructor] {obC obD : Type} (C : precategory obC) (D : precategory obD) : precategory (obC + obD) := precategory.mk (sum_hom C D) (λ a b c g f, begin induction a: induction b: induction c: esimp at *; induction f with f; induction g with g; (contradiction | exact up (g ∘ f)) end) (λ a, by induction a: exact up id) (λ a b c d h g f, abstract begin induction a: induction b: induction c: induction d: esimp at *; induction f with f; induction g with g; induction h with h; esimp at *; try contradiction: apply ap up !assoc end end) (λ a b f, abstract begin induction a: induction b: esimp at *; induction f with f; esimp; try contradiction: exact ap up !id_left end end) (λ a b f, abstract begin induction a: induction b: esimp at *; induction f with f; esimp; try contradiction: exact ap up !id_right end end) definition Precategory_sum [constructor] (C D : Precategory) : Precategory := precategory.Mk (precategory_sum C D) infixr `+c`:27 := Precategory_sum definition sum_functor [constructor] {C C' D D' : Precategory} (F : C ⇒ D) (G : C' ⇒ D') : C +c C' ⇒ D +c D' := functor.mk (λ a, by induction a: (exact inl (F a)|exact inr (G a))) (λ a b f, begin induction a: induction b: esimp at *; induction f with f; esimp; try contradiction: (exact up (F f)|exact up (G f)) end) (λ a, abstract by induction a: esimp; exact ap up !respect_id end) (λ a b c g f, abstract begin induction a: induction b: induction c: esimp at *; induction f with f; induction g with g; try contradiction: esimp; exact ap up !respect_comp end end) infixr `+f`:27 := sum_functor end category