/- Copyright (c) 2014 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer, Floris van Doorn Ported from Coq HoTT -/ import .iso algebra.bundled open eq is_trunc iso category algebra nat unit namespace category structure groupoid [class] (ob : Type) extends parent : precategory ob := mk' :: (all_iso : Π ⦃a b : ob⦄ (f : hom a b), @is_iso ob parent a b f) abbreviation all_iso := @groupoid.all_iso attribute groupoid.all_iso [instance] [priority 3000] attribute groupoid.to_precategory [unfold 2] definition groupoid.mk [reducible] [constructor] {ob : Type} (C : precategory ob) (H : Π (a b : ob) (f : a ⟶ b), is_iso f) : groupoid ob := precategory.rec_on C groupoid.mk' H definition groupoid_of_group.{l} [constructor] (A : Type.{l}) [G : group A] : groupoid.{0 l} unit := begin fapply groupoid.mk; fapply precategory.mk: intros, { exact A}, { exact _}, { exact a_2 * a_1}, { exact 1}, { apply mul.assoc}, { apply mul_one}, { apply one_mul}, { esimp [precategory.mk], fapply is_iso.mk, { exact f⁻¹}, { apply mul.right_inv}, { apply mul.left_inv}}, end definition hom_group [constructor] {A : Type} [G : groupoid A] (a : A) : group (hom a a) := begin fapply group.mk, intro f g, apply (comp f g), apply is_set_hom, intros f g h, apply (assoc f g h)⁻¹, apply (ID a), intro f, apply id_left, intro f, apply id_right, intro f, exact (iso.inverse f), intro f, exact (iso.left_inverse f), end definition group_of_is_contr_groupoid {ob : Type} [H : is_contr ob] [G : groupoid ob] : group (hom (center ob) (center ob)) := !hom_group definition group_of_groupoid_unit [G : groupoid unit] : group (hom ⋆ ⋆) := !hom_group -- Bundled version of categories -- we don't use Groupoid.carrier explicitly, but rather use Groupoid.carrier (to_Precategory C) structure Groupoid : Type := (carrier : Type) (struct : groupoid carrier) attribute Groupoid.struct [instance] [coercion] definition Groupoid.to_Precategory [coercion] [reducible] [unfold 1] (C : Groupoid) : Precategory := Precategory.mk (Groupoid.carrier C) _ attribute Groupoid._trans_of_to_Precategory_1 [unfold 1] definition groupoid.Mk [reducible] [constructor] := Groupoid.mk definition groupoid.MK [reducible] [constructor] (C : Precategory) (H : Π (a b : C) (f : a ⟶ b), is_iso f) : Groupoid := Groupoid.mk C (groupoid.mk C H) definition Groupoid.eta [unfold 1] (C : Groupoid) : Groupoid.mk C C = C := Groupoid.rec (λob c, idp) C definition Groupoid_of_Group [constructor] {i : signature} (G : Group i) : Groupoid := Groupoid.mk unit (groupoid_of_group G) end category