/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.precategory.nat_trans Author: Floris van Doorn, Jakob von Raumer -/ import .functor .iso open eq category functor is_trunc equiv sigma.ops sigma is_equiv function pi funext iso structure nat_trans {C D : Precategory} (F G : C ⇒ D) := (natural_map : Π (a : C), hom (F a) (G a)) (naturality : Π {a b : C} (f : hom a b), G f ∘ natural_map a = natural_map b ∘ F f) namespace nat_trans infixl `⟹`:25 := nat_trans -- \==> variables {C D E : Precategory} {F G H I : C ⇒ D} {F' G' : D ⇒ E} attribute natural_map [coercion] protected definition compose [reducible] (η : G ⟹ H) (θ : F ⟹ G) : F ⟹ H := nat_trans.mk (λ a, η a ∘ θ a) (λ a b f, calc H f ∘ (η a ∘ θ a) = (H f ∘ η a) ∘ θ a : by rewrite assoc ... = (η b ∘ G f) ∘ θ a : by rewrite naturality ... = η b ∘ (G f ∘ θ a) : by rewrite assoc ... = η b ∘ (θ b ∘ F f) : by rewrite naturality ... = (η b ∘ θ b) ∘ F f : by rewrite assoc) infixr `∘n`:60 := compose protected definition id [reducible] {C D : Precategory} {F : functor C D} : nat_trans F F := mk (λa, id) (λa b f, !id_right ⬝ !id_left⁻¹) protected definition ID [reducible] {C D : Precategory} (F : functor C D) : nat_trans F F := id definition nat_trans_eq_mk' {η₁ η₂ : Π (a : C), hom (F a) (G a)} (nat₁ : Π (a b : C) (f : hom a b), G f ∘ η₁ a = η₁ b ∘ F f) (nat₂ : Π (a b : C) (f : hom a b), G f ∘ η₂ a = η₂ b ∘ F f) (p : η₁ ∼ η₂) : nat_trans.mk η₁ nat₁ = nat_trans.mk η₂ nat₂ := apD011 nat_trans.mk (eq_of_homotopy p) !is_hprop.elim definition nat_trans_eq_mk {η₁ η₂ : F ⟹ G} : natural_map η₁ ∼ natural_map η₂ → η₁ = η₂ := nat_trans.rec_on η₁ (λf₁ nat₁, nat_trans.rec_on η₂ (λf₂ nat₂ p, !nat_trans_eq_mk' p)) protected definition assoc (η₃ : H ⟹ I) (η₂ : G ⟹ H) (η₁ : F ⟹ G) : η₃ ∘n (η₂ ∘n η₁) = (η₃ ∘n η₂) ∘n η₁ := nat_trans_eq_mk (λa, !assoc) protected definition id_left (η : F ⟹ G) : id ∘n η = η := nat_trans_eq_mk (λa, !id_left) protected definition id_right (η : F ⟹ G) : η ∘n id = η := nat_trans_eq_mk (λa, !id_right) protected definition sigma_char (F G : C ⇒ D) : (Σ (η : Π (a : C), hom (F a) (G a)), Π (a b : C) (f : hom a b), G f ∘ η a = η b ∘ F f) ≃ (F ⟹ G) := begin fapply equiv.mk, intro S, apply nat_trans.mk, exact (S.2), fapply adjointify, intro H, fapply sigma.mk, intro a, exact (H a), intros (a, b, f), exact (naturality H f), intro η, apply nat_trans_eq_mk, intro a, apply idp, intro S, fapply sigma_eq, apply eq_of_homotopy, intro a, apply idp, apply is_hprop.elim, end set_option apply.class_instance false definition is_hset_nat_trans : is_hset (F ⟹ G) := begin apply is_trunc_is_equiv_closed, apply (equiv.to_is_equiv !sigma_char), apply is_trunc_sigma, apply is_trunc_pi, intro a, exact (@homH (Precategory.carrier D) _ (F a) (G a)), intro η, apply is_trunc_pi, intro a, apply is_trunc_pi, intro b, apply is_trunc_pi, intro f, apply is_trunc_eq, apply is_trunc_succ, exact (@homH (Precategory.carrier D) _ (F a) (G b)), end definition nat_trans_functor_compose [reducible] (η : G ⟹ H) (F : E ⇒ C) : G ∘f F ⟹ H ∘f F := nat_trans.mk (λ a, η (F a)) (λ a b f, naturality η (F f)) definition functor_nat_trans_compose [reducible] (F : D ⇒ E) (η : G ⟹ H) : F ∘f G ⟹ F ∘f H := nat_trans.mk (λ a, F (η a)) (λ a b f, calc F (H f) ∘ F (η a) = F (H f ∘ η a) : respect_comp ... = F (η b ∘ G f) : by rewrite (naturality η f) ... = F (η b) ∘ F (G f) : respect_comp) infixr `∘nf`:60 := nat_trans_functor_compose infixr `∘fn`:60 := functor_nat_trans_compose definition functor_nat_trans_compose_commute (η : F ⟹ G) (θ : F' ⟹ G') : (θ ∘nf G) ∘n (F' ∘fn η) = (G' ∘fn η) ∘n (θ ∘nf F) := nat_trans_eq_mk (λc, (naturality θ (η c))⁻¹) definition nat_trans_of_eq [reducible] (p : F = G) : F ⟹ G := nat_trans.mk (λc, hom_of_eq (ap010 to_fun_ob p c)) (λa b f, eq.rec_on p (!id_right ⬝ !id_left⁻¹)) end nat_trans