/- Copyright (c) 2015 Leonardo de Moura. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura Finite type (type class). -/ import data.list.perm data.list.as_type data.bool open list bool unit decidable option function structure fintype [class] (A : Type) : Type := (elems : list A) (unique : nodup elems) (complete : ∀ a, a ∈ elems) definition elements_of (A : Type) [h : fintype A] : list A := @fintype.elems A h definition fintype_unit [instance] : fintype unit := fintype.mk [star] dec_trivial (λ u, match u with star := dec_trivial end) definition fintype_bool [instance] : fintype bool := fintype.mk [ff, tt] dec_trivial (λ b, match b with | tt := dec_trivial | ff := dec_trivial end) definition fintype_product [instance] {A B : Type} : Π [h₁ : fintype A] [h₂ : fintype B], fintype (A × B) | (fintype.mk e₁ u₁ c₁) (fintype.mk e₂ u₂ c₂) := fintype.mk (product e₁ e₂) (nodup_product u₁ u₂) (λ p, match p with (a, b) := mem_product (c₁ a) (c₂ b) end) /- auxiliary function for finding 'a' s.t. f a ≠ g a -/ section find_discr variables {A B : Type} variable [h : decidable_eq B] include h definition find_discr (f g : A → B) : list A → option A | [] := none | (a::l) := if f a = g a then find_discr l else some a theorem find_discr_nil (f g : A → B) : find_discr f g [] = none := rfl theorem find_discr_cons_of_ne {f g : A → B} {a : A} (l : list A) : f a ≠ g a → find_discr f g (a::l) = some a := assume ne, if_neg ne theorem find_discr_cons_of_eq {f g : A → B} {a : A} (l : list A) : f a = g a → find_discr f g (a::l) = find_discr f g l := assume eq, if_pos eq theorem ne_of_find_discr_eq_some {f g : A → B} {a : A} : ∀ {l}, find_discr f g l = some a → f a ≠ g a | [] e := by contradiction | (x::l) e := by_cases (λ h : f x = g x, have aux : find_discr f g l = some a, by rewrite [find_discr_cons_of_eq l h at e]; exact e, ne_of_find_discr_eq_some aux) (λ h : f x ≠ g x, have aux : some x = some a, by rewrite [find_discr_cons_of_ne l h at e]; exact e, option.no_confusion aux (λ xeqa : x = a, eq.rec_on xeqa h)) theorem all_eq_of_find_discr_eq_none {f g : A → B} : ∀ {l}, find_discr f g l = none → ∀ a, a ∈ l → f a = g a | [] e a i := absurd i !not_mem_nil | (x::l) e a i := by_cases (λ fx_eq_gx : f x = g x, have aux : find_discr f g l = none, by rewrite [find_discr_cons_of_eq l fx_eq_gx at e]; exact e, or.elim (eq_or_mem_of_mem_cons i) (λ aeqx : a = x, by rewrite [-aeqx at fx_eq_gx]; exact fx_eq_gx) (λ ainl : a ∈ l, all_eq_of_find_discr_eq_none aux a ainl)) (λ fx_ne_gx : f x ≠ g x, by rewrite [find_discr_cons_of_ne l fx_ne_gx at e]; contradiction) end find_discr definition decidable_eq_fun [instance] {A B : Type} [h₁ : fintype A] [h₂ : decidable_eq B] : decidable_eq (A → B) := λ f g, match h₁ with | fintype.mk e u c := match find_discr f g e with | some a := λ h : find_discr f g e = some a, inr (λ f_eq_g : f = g, absurd (by rewrite f_eq_g; reflexivity) (ne_of_find_discr_eq_some h)) | none := λ h : find_discr f g e = none, inl (show f = g, from funext (λ a : A, all_eq_of_find_discr_eq_none h a (c a))) end rfl end section check_pred variables {A : Type} definition check_pred (p : A → Prop) [h : decidable_pred p] : list A → bool | [] := tt | (a::l) := if p a then check_pred l else ff theorem check_pred_cons_of_pos {p : A → Prop} [h : decidable_pred p] {a : A} (l : list A) : p a → check_pred p (a::l) = check_pred p l := assume pa, if_pos pa theorem check_pred_cons_of_neg {p : A → Prop} [h : decidable_pred p] {a : A} (l : list A) : ¬ p a → check_pred p (a::l) = ff := assume npa, if_neg npa theorem all_of_check_pred_eq_tt {p : A → Prop} [h : decidable_pred p] : ∀ {l : list A}, check_pred p l = tt → ∀ {a}, a ∈ l → p a | [] eqtt a ainl := absurd ainl !not_mem_nil | (b::l) eqtt a ainbl := by_cases (λ pb : p b, or.elim (eq_or_mem_of_mem_cons ainbl) (λ aeqb : a = b, by rewrite [aeqb]; exact pb) (λ ainl : a ∈ l, have eqtt₁ : check_pred p l = tt, by rewrite [check_pred_cons_of_pos _ pb at eqtt]; exact eqtt, all_of_check_pred_eq_tt eqtt₁ ainl)) (λ npb : ¬ p b, by rewrite [check_pred_cons_of_neg _ npb at eqtt]; exact (bool.no_confusion eqtt)) theorem ex_of_check_pred_eq_ff {p : A → Prop} [h : decidable_pred p] : ∀ {l : list A}, check_pred p l = ff → ∃ w, ¬ p w | [] eqtt := bool.no_confusion eqtt | (a::l) eqtt := by_cases (λ pa : p a, have eqtt₁ : check_pred p l = ff, by rewrite [check_pred_cons_of_pos _ pa at eqtt]; exact eqtt, ex_of_check_pred_eq_ff eqtt₁) (λ npa : ¬ p a, exists.intro a npa) end check_pred definition decidable_forall_finite [instance] {A : Type} {p : A → Prop} [h₁ : fintype A] [h₂ : decidable_pred p] : decidable (∀ x : A, p x) := match h₁ with | fintype.mk e u c := match check_pred p e with | tt := λ h : check_pred p e = tt, inl (λ a : A, all_of_check_pred_eq_tt h (c a)) | ff := λ h : check_pred p e = ff, inr (λ n : (∀ x, p x), obtain (a : A) (w : ¬ p a), from ex_of_check_pred_eq_ff h, absurd (n a) w) end rfl end definition decidable_exists_finite [instance] {A : Type} {p : A → Prop} [h₁ : fintype A] [h₂ : decidable_pred p] : decidable (∃ x : A, p x) := match h₁ with | fintype.mk e u c := match check_pred (λ a, ¬ p a) e with | tt := λ h : check_pred (λ a, ¬ p a) e = tt, inr (λ ex : (∃ x, p x), obtain x px, from ex, absurd px (all_of_check_pred_eq_tt h (c x))) | ff := λ h : check_pred (λ a, ¬ p a) e = ff, inl ( assert aux₁ : ∃ x, ¬¬p x, from ex_of_check_pred_eq_ff h, obtain x nnpx, from aux₁, exists.intro x (not_not_elim nnpx)) end rfl end open list.as_type -- Auxiliary function for returning a list with all elements of the type: (list.as_type l) -- Remark ⟪s⟫ is notation for (list.as_type l) -- We use this function to define the instance for (fintype ⟪s⟫) private definition ltype_elems {A : Type} {s : list A} : Π {l : list A}, l ⊆ s → list ⟪s⟫ | [] h := [] | (a::l) h := lval a (h a !mem_cons) :: ltype_elems (sub_of_cons_sub h) private theorem mem_of_mem_ltype_elems {A : Type} {a : A} {s : list A} : Π {l : list A} {h : l ⊆ s} {m : a ∈ s}, mk a m ∈ ltype_elems h → a ∈ l | [] h m lin := absurd lin !not_mem_nil | (b::l) h m lin := or.elim (eq_or_mem_of_mem_cons lin) (λ leq : mk a m = mk b (h b (mem_cons b l)), as_type.no_confusion leq (λ aeqb em, by rewrite [aeqb]; exact !mem_cons)) (λ linl : mk a m ∈ ltype_elems (sub_of_cons_sub h), have ainl : a ∈ l, from mem_of_mem_ltype_elems linl, mem_cons_of_mem _ ainl) private theorem nodup_ltype_elems {A : Type} {s : list A} : Π {l : list A} (d : nodup l) (h : l ⊆ s), nodup (ltype_elems h) | [] d h := nodup_nil | (a::l) d h := have d₁ : nodup l, from nodup_of_nodup_cons d, have nainl : a ∉ l, from not_mem_of_nodup_cons d, let h₁ : l ⊆ s := sub_of_cons_sub h in have d₂ : nodup (ltype_elems h₁), from nodup_ltype_elems d₁ h₁, have nin : mk a (h a (mem_cons a l)) ∉ ltype_elems h₁, from assume ab, absurd (mem_of_mem_ltype_elems ab) nainl, nodup_cons nin d₂ private theorem mem_ltype_elems {A : Type} {s : list A} {a : ⟪s⟫} : Π {l : list A} (h : l ⊆ s), value a ∈ l → a ∈ ltype_elems h | [] h vainl := absurd vainl !not_mem_nil | (b::l) h vainbl := or.elim (eq_or_mem_of_mem_cons vainbl) (λ vaeqb : value a = b, begin revert vaeqb h, -- TODO(Leo): check why 'cases a with va, ma' produces an incorrect proof eapply as_type.cases_on a, intro va ma vaeqb, rewrite -vaeqb, intro h, apply mem_cons end) (λ vainl : value a ∈ l, have aux : a ∈ ltype_elems (sub_of_cons_sub h), from mem_ltype_elems (sub_of_cons_sub h) vainl, mem_cons_of_mem _ aux) definition fintype_list_as_type [instance] {A : Type} [h : decidable_eq A] {s : list A} : fintype ⟪s⟫ := let nds : list A := erase_dup s in have sub₁ : nds ⊆ s, from erase_dup_sub s, have sub₂ : s ⊆ nds, from sub_erase_dup s, have dnds : nodup nds, from nodup_erase_dup s, let e : list ⟪s⟫ := ltype_elems sub₁ in fintype.mk e (nodup_ltype_elems dnds sub₁) (λ a : ⟪s⟫, show a ∈ e, from have vains : value a ∈ s, from is_member a, have vainnds : value a ∈ nds, from sub₂ vains, mem_ltype_elems sub₁ vainnds)