definition Bool [inline] := Type.{0} inductive false : Bool := -- No constructors theorem false_elim (c : Bool) (H : false) := false_rec c H inductive true : Bool := | trivial : true definition not (a : Bool) := a → false precedence `¬`:40 notation `¬` a := not a notation `assume` binders `,` r:(scoped f, f) := r notation `take` binders `,` r:(scoped f, f) := r theorem not_intro {a : Bool} (H : a → false) : ¬ a := H theorem not_elim {a : Bool} (H1 : ¬ a) (H2 : a) : false := H1 H2 theorem absurd {a : Bool} (H1 : a) (H2 : ¬ a) : false := H2 H1 theorem mt {a b : Bool} (H1 : a → b) (H2 : ¬ b) : ¬ a := assume Ha : a, absurd (H1 Ha) H2 theorem contrapos {a b : Bool} (H : a → b) : ¬ b → ¬ a := assume Hnb : ¬ b, mt H Hnb theorem absurd_elim {a : Bool} (b : Bool) (H1 : a) (H2 : ¬ a) : b := false_elim b (absurd H1 H2) inductive and (a b : Bool) : Bool := | and_intro : a → b → and a b infixr `/\` 35 := and infixr `∧` 35 := and theorem and_elim_left {a b : Bool} (H : a ∧ b) : a := and_rec (λ a b, a) H theorem and_elim_right {a b : Bool} (H : a ∧ b) : b := and_rec (λ a b, b) H inductive or (a b : Bool) : Bool := | or_intro_left : a → or a b | or_intro_right : b → or a b infixr `\/` 30 := or infixr `∨` 30 := or theorem or_elim (a b c : Bool) (H1 : a ∨ b) (H2 : a → c) (H3 : b → c) : c := or_rec H2 H3 H1 inductive eq {A : Type} (a : A) : A → Bool := | refl : eq a a infix `=` 50 := eq theorem subst {A : Type} {a b : A} {P : A → Bool} (H1 : a = b) (H2 : P a) : P b := eq_rec H2 H1 theorem trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c := subst H2 H1 theorem symm {A : Type} {a b : A} (H : a = b) : b = a := subst H (refl a) theorem congr1 {A B : Type} {f g : A → B} (H : f = g) (a : A) : f a = g a := subst H (refl (f a)) theorem congr2 {A B : Type} {a b : A} (f : A → B) (H : a = b) : f a = f b := subst H (refl (f a)) definition cast {A B : Type} (H : A = B) (a : A) : B := eq_rec a H -- TODO(Leo): check why unifier needs 'help' in the following theorem theorem cast_refl.{l} {A : Type.{l}} (a : A) : @cast.{l} A A (refl A) a = a := refl (@cast.{l} A A (refl A) a) definition iff (a b : Bool) := (a → b) ∧ (b → a) infix `↔` 50 := iff theorem iff_intro {a b : Bool} (H1 : a → b) (H2 : b → a) : a ↔ b := and_intro H1 H2 theorem iff_elim {a b c : Bool} (H1 : (a → b) → (b → a) → c) (H2 : a ↔ b) : c := and_rec H1 H2 theorem iff_elim_left {a b : Bool} (H : a ↔ b) : a → b := iff_elim (assume H1 H2, H1) H theorem iff_elim_right {a b : Bool} (H : a ↔ b) : b → a := iff_elim (assume H1 H2, H2) H theorem iff_mp_left {a b : Bool} (H1 : a ↔ b) (H2 : a) : b := (iff_elim_left H1) H2 theorem iff_mp_right {a b : Bool} (H1 : a ↔ b) (H2 : b) : a := (iff_elim_right H1) H2 inductive Exists {A : Type} (P : A → Bool) : Bool := | exists_intro : ∀ (a : A), P a → Exists P notation `∃` binders `,` r:(scoped P, Exists P) := r theorem exists_elim {A : Type} {P : A → Bool} {B : Bool} (H1 : ∃ x : A, P x) (H2 : ∀ (a : A) (H : P a), B) : B := Exists_rec H2 H1 definition inhabited (A : Type) := ∃ x : A, true theorem inhabited_intro {A : Type} (a : A) : inhabited A := exists_intro a trivial theorem inhabited_elim {A : Type} {B : Bool} (H1 : inhabited A) (H2 : A → B) : B := exists_elim H1 (λ (a : A) (H : true), H2 a) theorem inhabited_Bool : inhabited Bool := inhabited_intro true theorem inhabited_fun (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B) := inhabited_elim H (take (b : B), inhabited_intro (λ a : A, b))