/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad The power function on the integers. -/ import data.int.basic data.int.order data.int.div algebra.group_power data.nat.power namespace int definition int_has_pow_nat [reducible] [instance] [priority int.prio] : has_pow_nat int := has_pow_nat.mk has_pow_nat.pow_nat /- definition nmul (n : ℕ) (a : ℤ) : ℤ := algebra.nmul n a infix [priority int.prio] ⬝ := nmul definition imul (i : ℤ) (a : ℤ) : ℤ := algebra.imul i a -/ open nat theorem of_nat_pow (a n : ℕ) : of_nat (a^n) = (of_nat a)^n := begin induction n with n ih, apply eq.refl, krewrite [pow_succ, pow_succ, of_nat_mul, ih] end end int