/- Copyright (c) 2015 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Robert Y. Lewis The real numbers, constructed as equivalence classes of Cauchy sequences of rationals. This construction follows Bishop and Bridges (1985). To do: o Rename things and possibly make theorems private -/ import data.nat data.rat.order data.pnat open nat eq eq.ops pnat open -[coercions] rat local notation 0 := rat.of_num 0 local notation 1 := rat.of_num 1 ---------------------------------------------------------------------------------------------------- -- small helper lemmas theorem s_mul_assoc_lemma_3 (a b n : ℕ+) (p : ℚ) : p * ((a * n)⁻¹ + (b * n)⁻¹) = p * (a⁻¹ + b⁻¹) * n⁻¹ := by rewrite [rat.mul.assoc, rat.right_distrib, *inv_mul_eq_mul_inv] theorem s_mul_assoc_lemma_4 {n : ℕ+} {ε q : ℚ} (Hε : ε > 0) (Hq : q > 0) (H : n ≥ pceil (q / ε)) : q * n⁻¹ ≤ ε := begin let H2 := pceil_helper H (pos_div_of_pos_of_pos Hq Hε), let H3 := mul_le_of_le_div (pos_div_of_pos_of_pos Hq Hε) H2, rewrite -(one_mul ε), apply mul_le_mul_of_mul_div_le, repeat assumption end theorem find_thirds (a b : ℚ) (H : b > 0) : ∃ n : ℕ+, a + n⁻¹ + n⁻¹ + n⁻¹ < a + b := let n := pceil (of_nat 4 / b) in have of_nat 3 * n⁻¹ < b, from calc of_nat 3 * n⁻¹ < of_nat 4 * n⁻¹ : rat.mul_lt_mul_of_pos_right dec_trivial !inv_pos ... ≤ of_nat 4 * (b / of_nat 4) : rat.mul_le_mul_of_nonneg_left (!inv_pceil_div dec_trivial H) !of_nat_nonneg ... = b / of_nat 4 * of_nat 4 : rat.mul.comm ... = b : rat.div_mul_cancel dec_trivial, exists.intro n (calc a + n⁻¹ + n⁻¹ + n⁻¹ = a + (1 + 1 + 1) * n⁻¹ : by rewrite[*rat.right_distrib,*rat.one_mul,-*rat.add.assoc] ... = a + of_nat 3 * n⁻¹ : {show 1+1+1=of_nat 3, from dec_trivial} ... < a + b : rat.add_lt_add_left this a) theorem squeeze {a b : ℚ} (H : ∀ j : ℕ+, a ≤ b + j⁻¹ + j⁻¹ + j⁻¹) : a ≤ b := begin apply rat.le_of_not_gt, intro Hb, cases find_midpoint Hb with [c, Hc], cases find_thirds b c (and.right Hc) with [j, Hbj], have Ha : a > b + j⁻¹ + j⁻¹ + j⁻¹, from lt.trans Hbj (and.left Hc), apply (not_le_of_gt Ha) !H end theorem squeeze_2 {a b : ℚ} (H : ∀ ε : ℚ, ε > 0 → a ≥ b - ε) : a ≥ b := begin apply rat.le_of_not_gt, intro Hb, cases find_midpoint Hb with [c, Hc], let Hc' := H c (and.right Hc), apply (rat.not_le_of_gt (and.left Hc)) (iff.mpr !le_add_iff_sub_right_le Hc') end theorem rewrite_helper (a b c d : ℚ) : a * b - c * d = a * (b - d) + (a - c) * d := by rewrite[rat.mul_sub_left_distrib, rat.mul_sub_right_distrib, add_sub, rat.sub_add_cancel] theorem rewrite_helper3 (a b c d e f g: ℚ) : a * (b + c) - (d * e + f * g) = (a * b - d * e) + (a * c - f * g) := by rewrite[rat.mul.left_distrib, add_sub_comm] theorem rewrite_helper4 (a b c d : ℚ) : a * b - c * d = (a * b - a * d) + (a * d - c * d) := by rewrite[add_sub, rat.sub_add_cancel] theorem rewrite_helper5 (a b x y : ℚ) : a - b = (a - x) + (x - y) + (y - b) := by rewrite[*add_sub, *rat.sub_add_cancel] theorem rewrite_helper7 (a b c d x : ℚ) : a * b * c - d = (b * c) * (a - x) + (x * b * c - d) := by rewrite[rat.mul_sub_left_distrib, add_sub]; exact (calc a * b * c - d = a * b * c - x * b * c + x * b * c - d : rat.sub_add_cancel ... = b * c * a - b * c * x + x * b * c - d : have ∀ {a b c : ℚ}, a * b * c = b * c * a, from λa b c, !rat.mul.comm ▸ !rat.mul.right_comm, this ▸ this ▸ rfl) theorem ineq_helper (a b : ℚ) (k m n : ℕ+) (H : a ≤ (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹) (H2 : b ≤ (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹) : (rat_of_pnat k) * a + b * (rat_of_pnat k) ≤ m⁻¹ + n⁻¹ := have (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹ = (2 * k)⁻¹ * (m⁻¹ + n⁻¹), by rewrite[rat.mul.left_distrib,*inv_mul_eq_mul_inv]; exact !rat.mul.comm ▸ rfl, have a + b ≤ k⁻¹ * (m⁻¹ + n⁻¹), from calc a + b ≤ (2 * k)⁻¹ * (m⁻¹ + n⁻¹) + (2 * k)⁻¹ * (m⁻¹ + n⁻¹) : rat.add_le_add (this ▸ H) (this ▸ H2) ... = ((2 * k)⁻¹ + (2 * k)⁻¹) * (m⁻¹ + n⁻¹) : rat.mul.right_distrib ... = k⁻¹ * (m⁻¹ + n⁻¹) : (pnat.add_halves k) ▸ rfl, calc (rat_of_pnat k) * a + b * (rat_of_pnat k) = (rat_of_pnat k) * a + (rat_of_pnat k) * b : rat.mul.comm ... = (rat_of_pnat k) * (a + b) : rat.left_distrib ... ≤ (rat_of_pnat k) * (k⁻¹ * (m⁻¹ + n⁻¹)) : iff.mp (!rat.le_iff_mul_le_mul_left !rat_of_pnat_is_pos) this ... = m⁻¹ + n⁻¹ : by rewrite[-rat.mul.assoc, inv_cancel_left, rat.one_mul] theorem factor_lemma (a b c d e : ℚ) : abs (a + b + c - (d + (b + e))) = abs ((a - d) + (c - e)) := !congr_arg (calc a + b + c - (d + (b + e)) = a + b + c - (d + b + e) : rat.add.assoc ... = a + b - (d + b) + (c - e) : add_sub_comm ... = a + b - b - d + (c - e) : sub_add_eq_sub_sub_swap ... = a - d + (c - e) : rat.add_sub_cancel) theorem factor_lemma_2 (a b c d : ℚ) : (a + b) + (c + d) = (a + c) + (d + b) := !rat.add.comm ▸ (binary.comm4 rat.add.comm rat.add.assoc a b c d) -------------------------------------- -- define cauchy sequences and equivalence. show equivalence actually is one namespace s notation `seq` := ℕ+ → ℚ definition regular (s : seq) := ∀ m n : ℕ+, abs (s m - s n) ≤ m⁻¹ + n⁻¹ definition equiv (s t : seq) := ∀ n : ℕ+, abs (s n - t n) ≤ n⁻¹ + n⁻¹ infix `≡` := equiv theorem equiv.refl (s : seq) : s ≡ s := begin intros, rewrite [rat.sub_self, abs_zero], apply add_invs_nonneg end theorem equiv.symm (s t : seq) (H : s ≡ t) : t ≡ s := begin intros, rewrite [-abs_neg, neg_sub], exact H n end theorem bdd_of_eq {s t : seq} (H : s ≡ t) : ∀ j : ℕ+, ∀ n : ℕ+, n ≥ 2 * j → abs (s n - t n) ≤ j⁻¹ := begin intros [j, n, Hn], apply rat.le.trans, apply H, rewrite -(add_halves j), apply rat.add_le_add, apply inv_ge_of_le Hn, apply inv_ge_of_le Hn end theorem eq_of_bdd {s t : seq} (Hs : regular s) (Ht : regular t) (H : ∀ j : ℕ+, ∃ Nj : ℕ+, ∀ n : ℕ+, Nj ≤ n → abs (s n - t n) ≤ j⁻¹) : s ≡ t := begin intros, have Hj : (∀ j : ℕ+, abs (s n - t n) ≤ n⁻¹ + n⁻¹ + j⁻¹ + j⁻¹ + j⁻¹), begin intros, cases H j with [Nj, HNj], rewrite [-(rat.sub_add_cancel (s n) (s (max j Nj))), rat.add.assoc (s n + -s (max j Nj)), ↑regular at *], apply rat.le.trans, apply abs_add_le_abs_add_abs, apply rat.le.trans, apply rat.add_le_add, apply Hs, rewrite [-(rat.sub_add_cancel (s (max j Nj)) (t (max j Nj))), rat.add.assoc], apply abs_add_le_abs_add_abs, apply rat.le.trans, apply rat.add_le_add_left, apply rat.add_le_add, apply HNj (max j Nj) (max_right j Nj), apply Ht, have hsimp : ∀ m : ℕ+, n⁻¹ + m⁻¹ + (j⁻¹ + (m⁻¹ + n⁻¹)) = n⁻¹ + n⁻¹ + j⁻¹ + (m⁻¹ + m⁻¹), from λm, calc n⁻¹ + m⁻¹ + (j⁻¹ + (m⁻¹ + n⁻¹)) = n⁻¹ + (j⁻¹ + (m⁻¹ + n⁻¹)) + m⁻¹ : rat.add.right_comm ... = n⁻¹ + (j⁻¹ + m⁻¹ + n⁻¹) + m⁻¹ : rat.add.assoc ... = n⁻¹ + (n⁻¹ + (j⁻¹ + m⁻¹)) + m⁻¹ : rat.add.comm ... = n⁻¹ + n⁻¹ + j⁻¹ + (m⁻¹ + m⁻¹) : by rewrite[-*rat.add.assoc], rewrite hsimp, have Hms : (max j Nj)⁻¹ + (max j Nj)⁻¹ ≤ j⁻¹ + j⁻¹, begin apply rat.add_le_add, apply inv_ge_of_le (max_left j Nj), apply inv_ge_of_le (max_left j Nj), end, apply (calc n⁻¹ + n⁻¹ + j⁻¹ + ((max j Nj)⁻¹ + (max j Nj)⁻¹) ≤ n⁻¹ + n⁻¹ + j⁻¹ + (j⁻¹ + j⁻¹) : rat.add_le_add_left Hms ... = n⁻¹ + n⁻¹ + j⁻¹ + j⁻¹ + j⁻¹ : by rewrite *rat.add.assoc) end, apply squeeze Hj end theorem eq_of_bdd_var {s t : seq} (Hs : regular s) (Ht : regular t) (H : ∀ ε : ℚ, ε > 0 → ∃ Nj : ℕ+, ∀ n : ℕ+, Nj ≤ n → abs (s n - t n) ≤ ε) : s ≡ t := begin apply eq_of_bdd, repeat assumption, intros, apply H, apply inv_pos end theorem pnat_bound {ε : ℚ} (Hε : ε > 0) : ∃ p : ℕ+, p⁻¹ ≤ ε := begin existsi (pceil (1 / ε)), rewrite -(rat.div_div (rat.ne_of_gt Hε)) at {2}, apply pceil_helper, apply le.refl, apply div_pos_of_pos Hε end theorem bdd_of_eq_var {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) : ∀ ε : ℚ, ε > 0 → ∃ Nj : ℕ+, ∀ n : ℕ+, Nj ≤ n → abs (s n - t n) ≤ ε := begin intro ε Hε, cases pnat_bound Hε with [N, HN], existsi 2 * N, intro n Hn, apply rat.le.trans, apply bdd_of_eq Heq N n Hn, assumption end theorem equiv.trans (s t u : seq) (Hs : regular s) (Ht : regular t) (Hu : regular u) (H : s ≡ t) (H2 : t ≡ u) : s ≡ u := begin apply eq_of_bdd Hs Hu, intros, existsi 2 * (2 * j), intro n Hn, rewrite [-rat.sub_add_cancel (s n) (t n), rat.add.assoc], apply rat.le.trans, apply abs_add_le_abs_add_abs, have Hst : abs (s n - t n) ≤ (2 * j)⁻¹, from bdd_of_eq H _ _ Hn, have Htu : abs (t n - u n) ≤ (2 * j)⁻¹, from bdd_of_eq H2 _ _ Hn, rewrite -(add_halves j), apply rat.add_le_add, repeat assumption end ----------------------------------- -- define operations on cauchy sequences. show operations preserve regularity definition K (s : seq) : ℕ+ := pnat.pos (ubound (abs (s pone)) + 1 + 1) dec_trivial theorem canon_bound {s : seq} (Hs : regular s) (n : ℕ+) : abs (s n) ≤ rat_of_pnat (K s) := calc abs (s n) = abs (s n - s pone + s pone) : by rewrite rat.sub_add_cancel ... ≤ abs (s n - s pone) + abs (s pone) : abs_add_le_abs_add_abs ... ≤ n⁻¹ + pone⁻¹ + abs (s pone) : rat.add_le_add_right !Hs ... = n⁻¹ + (1 + abs (s pone)) : by rewrite [pone_inv, rat.add.assoc] ... ≤ 1 + (1 + abs (s pone)) : rat.add_le_add_right (inv_le_one n) ... = abs (s pone) + (1 + 1) : by rewrite [add.comm 1 (abs (s pone)), rat.add.comm 1, rat.add.assoc] ... ≤ of_nat (ubound (abs (s pone))) + (1 + 1) : rat.add_le_add_right (!ubound_ge) ... = of_nat (ubound (abs (s pone)) + (1 + 1)) : of_nat_add ... = of_nat (ubound (abs (s pone)) + 1 + 1) : nat.add.assoc theorem bdd_of_regular {s : seq} (H : regular s) : ∃ b : ℚ, ∀ n : ℕ+, s n ≤ b := begin existsi rat_of_pnat (K s), intros, apply rat.le.trans, apply le_abs_self, apply canon_bound H end theorem bdd_of_regular_strict {s : seq} (H : regular s) : ∃ b : ℚ, ∀ n : ℕ+, s n < b := begin cases bdd_of_regular H with [b, Hb], existsi b + 1, intro n, apply rat.lt_of_le_of_lt, apply Hb, apply rat.lt_add_of_pos_right, apply rat.zero_lt_one end definition K₂ (s t : seq) := max (K s) (K t) theorem K₂_symm (s t : seq) : K₂ s t = K₂ t s := if H : K s < K t then (assert H1 : K₂ s t = K t, from max_eq_right H, assert H2 : K₂ t s = K t, from max_eq_left (not_lt_of_ge (le_of_lt H)), by rewrite [H1, -H2]) else (assert H1 : K₂ s t = K s, from max_eq_left H, if J : K t < K s then (assert H2 : K₂ t s = K s, from max_eq_right J, by rewrite [H1, -H2]) else (assert Heq : K t = K s, from eq_of_le_of_ge (le_of_not_gt H) (le_of_not_gt J), by rewrite [↑K₂, Heq])) theorem canon_2_bound_left (s t : seq) (Hs : regular s) (n : ℕ+) : abs (s n) ≤ rat_of_pnat (K₂ s t) := calc abs (s n) ≤ rat_of_pnat (K s) : canon_bound Hs n ... ≤ rat_of_pnat (K₂ s t) : rat_of_pnat_le_of_pnat_le (!max_left) theorem canon_2_bound_right (s t : seq) (Ht : regular t) (n : ℕ+) : abs (t n) ≤ rat_of_pnat (K₂ s t) := calc abs (t n) ≤ rat_of_pnat (K t) : canon_bound Ht n ... ≤ rat_of_pnat (K₂ s t) : rat_of_pnat_le_of_pnat_le (!max_right) definition sadd (s t : seq) : seq := λ n, (s (2 * n)) + (t (2 * n)) theorem reg_add_reg {s t : seq} (Hs : regular s) (Ht : regular t) : regular (sadd s t) := begin rewrite [↑regular at *, ↑sadd], intros, rewrite add_sub_comm, apply rat.le.trans, apply abs_add_le_abs_add_abs, rewrite add_halves_double, apply rat.add_le_add, apply Hs, apply Ht end definition smul (s t : seq) : seq := λ n : ℕ+, (s ((K₂ s t) * 2 * n)) * (t ((K₂ s t) * 2 * n)) theorem reg_mul_reg {s t : seq} (Hs : regular s) (Ht : regular t) : regular (smul s t) := begin rewrite [↑regular at *, ↑smul], intros, rewrite rewrite_helper, apply rat.le.trans, apply abs_add_le_abs_add_abs, apply rat.le.trans, apply rat.add_le_add, rewrite abs_mul, apply rat.mul_le_mul_of_nonneg_right, apply canon_2_bound_left s t Hs, apply abs_nonneg, rewrite abs_mul, apply rat.mul_le_mul_of_nonneg_left, apply canon_2_bound_right s t Ht, apply abs_nonneg, apply ineq_helper, apply Ht, apply Hs end definition sneg (s : seq) : seq := λ n : ℕ+, - (s n) theorem reg_neg_reg {s : seq} (Hs : regular s) : regular (sneg s) := begin rewrite [↑regular at *, ↑sneg], intros, rewrite [-abs_neg, neg_sub, sub_neg_eq_add, rat.add.comm], apply Hs end ----------------------------------- -- show properties of +, *, - definition zero : seq := λ n, 0 definition one : seq := λ n, 1 theorem s_add_comm (s t : seq) : sadd s t ≡ sadd t s := begin esimp [sadd], intro n, rewrite [sub_add_eq_sub_sub, rat.add_sub_cancel, rat.sub_self, abs_zero], apply add_invs_nonneg end theorem s_add_assoc (s t u : seq) (Hs : regular s) (Hu : regular u) : sadd (sadd s t) u ≡ sadd s (sadd t u) := begin rewrite [↑sadd, ↑equiv, ↑regular at *], intros, rewrite factor_lemma, apply rat.le.trans, apply abs_add_le_abs_add_abs, apply rat.le.trans, rotate 1, apply rat.add_le_add_right, apply inv_two_mul_le_inv, rewrite [-(add_halves (2 * n)), -(add_halves n), factor_lemma_2], apply rat.add_le_add, apply Hs, apply Hu end theorem s_mul_comm (s t : seq) : smul s t ≡ smul t s := begin rewrite ↑smul, intros n, rewrite [*(K₂_symm s t), rat.mul.comm, rat.sub_self, abs_zero], apply add_invs_nonneg end definition DK (s t : seq) := (K₂ s t) * 2 theorem DK_rewrite (s t : seq) : (K₂ s t) * 2 = DK s t := rfl definition TK (s t u : seq) := (DK (λ (n : ℕ+), s (mul (DK s t) n) * t (mul (DK s t) n)) u) theorem TK_rewrite (s t u : seq) : (DK (λ (n : ℕ+), s (mul (DK s t) n) * t (mul (DK s t) n)) u) = TK s t u := rfl theorem s_mul_assoc_lemma (s t u : seq) (a b c d : ℕ+) : abs (s a * t a * u b - s c * t d * u d) ≤ abs (t a) * abs (u b) * abs (s a - s c) + abs (s c) * abs (t a) * abs (u b - u d) + abs (s c) * abs (u d) * abs (t a - t d) := begin rewrite (rewrite_helper7 _ _ _ _ (s c)), apply rat.le.trans, apply abs_add_le_abs_add_abs, rewrite rat.add.assoc, apply rat.add_le_add, rewrite 2 abs_mul, apply rat.le.refl, rewrite [*rat.mul.assoc, -rat.mul_sub_left_distrib, -rat.left_distrib, abs_mul], apply rat.mul_le_mul_of_nonneg_left, rewrite rewrite_helper, apply rat.le.trans, apply abs_add_le_abs_add_abs, apply rat.add_le_add, rewrite abs_mul, apply rat.le.refl, rewrite [abs_mul, rat.mul.comm], apply rat.le.refl, apply abs_nonneg end definition Kq (s : seq) := rat_of_pnat (K s) + 1 theorem Kq_bound {s : seq} (H : regular s) : ∀ n, abs (s n) ≤ Kq s := begin intros, apply rat.le_of_lt, apply rat.lt_of_le_of_lt, apply canon_bound H, apply rat.lt_add_of_pos_right, apply rat.zero_lt_one end theorem Kq_bound_nonneg {s : seq} (H : regular s) : 0 ≤ Kq s := rat.le.trans !abs_nonneg (Kq_bound H 2) theorem Kq_bound_pos {s : seq} (H : regular s) : 0 < Kq s := have H1 : 0 ≤ rat_of_pnat (K s), from rat.le.trans (!abs_nonneg) (canon_bound H 2), add_pos_of_nonneg_of_pos H1 rat.zero_lt_one theorem s_mul_assoc_lemma_5 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (a b c : ℕ+) : abs (t a) * abs (u b) * abs (s a - s c) ≤ (Kq t) * (Kq u) * (a⁻¹ + c⁻¹) := begin repeat apply rat.mul_le_mul, apply Kq_bound Ht, apply Kq_bound Hu, apply abs_nonneg, apply Kq_bound_nonneg Ht, apply Hs, apply abs_nonneg, apply rat.mul_nonneg, apply Kq_bound_nonneg Ht, apply Kq_bound_nonneg Hu, end theorem s_mul_assoc_lemma_2 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (a b c d : ℕ+) : abs (t a) * abs (u b) * abs (s a - s c) + abs (s c) * abs (t a) * abs (u b - u d) + abs (s c) * abs (u d) * abs (t a - t d) ≤ (Kq t) * (Kq u) * (a⁻¹ + c⁻¹) + (Kq s) * (Kq t) * (b⁻¹ + d⁻¹) + (Kq s) * (Kq u) * (a⁻¹ + d⁻¹) := begin apply add_le_add_three, repeat (assumption | apply rat.mul_le_mul | apply Kq_bound | apply Kq_bound_nonneg | apply abs_nonneg), apply Hs, apply abs_nonneg, apply rat.mul_nonneg, repeat (assumption | apply rat.mul_le_mul | apply Kq_bound | apply Kq_bound_nonneg | apply abs_nonneg), apply Hu, apply abs_nonneg, apply rat.mul_nonneg, repeat (assumption | apply rat.mul_le_mul | apply Kq_bound | apply Kq_bound_nonneg | apply abs_nonneg), apply Ht, apply abs_nonneg, apply rat.mul_nonneg, repeat (apply Kq_bound_nonneg; assumption) end theorem s_mul_assoc {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) : smul (smul s t) u ≡ smul s (smul t u) := begin apply eq_of_bdd_var, repeat apply reg_mul_reg, apply Hs, apply Ht, apply Hu, apply reg_mul_reg Hs, apply reg_mul_reg Ht Hu, intros, apply exists.intro, intros, rewrite [↑smul, *DK_rewrite, *TK_rewrite, -*pnat.mul.assoc, -*rat.mul.assoc], apply rat.le.trans, apply s_mul_assoc_lemma, apply rat.le.trans, apply s_mul_assoc_lemma_2, apply Hs, apply Ht, apply Hu, rewrite [*s_mul_assoc_lemma_3, -rat.distrib_three_right], apply s_mul_assoc_lemma_4, apply a, repeat apply rat.add_pos, repeat apply rat.mul_pos, apply Kq_bound_pos Ht, apply Kq_bound_pos Hu, apply rat.add_pos, repeat apply inv_pos, repeat apply rat.mul_pos, apply Kq_bound_pos Hs, apply Kq_bound_pos Ht, apply rat.add_pos, repeat apply inv_pos, repeat apply rat.mul_pos, apply Kq_bound_pos Hs, apply Kq_bound_pos Hu, apply rat.add_pos, repeat apply inv_pos, apply a_1 end theorem zero_is_reg : regular zero := begin rewrite [↑regular, ↑zero], intros, rewrite [rat.sub_zero, abs_zero], apply add_invs_nonneg end theorem s_zero_add (s : seq) (H : regular s) : sadd zero s ≡ s := begin rewrite [↑sadd, ↑zero, ↑equiv, ↑regular at H], intros, rewrite [rat.zero_add], apply rat.le.trans, apply H, apply rat.add_le_add, apply inv_two_mul_le_inv, apply rat.le.refl end theorem s_add_zero (s : seq) (H : regular s) : sadd s zero ≡ s := begin rewrite [↑sadd, ↑zero, ↑equiv, ↑regular at H], intros, rewrite [rat.add_zero], apply rat.le.trans, apply H, apply rat.add_le_add, apply inv_two_mul_le_inv, apply rat.le.refl end theorem s_neg_cancel (s : seq) (H : regular s) : sadd (sneg s) s ≡ zero := begin rewrite [↑sadd, ↑sneg, ↑regular at H, ↑zero, ↑equiv], intros, rewrite [neg_add_eq_sub, rat.sub_self, rat.sub_zero, abs_zero], apply add_invs_nonneg end theorem neg_s_cancel (s : seq) (H : regular s) : sadd s (sneg s) ≡ zero := begin apply equiv.trans, rotate 3, apply s_add_comm, apply s_neg_cancel s H, repeat (apply reg_add_reg | apply reg_neg_reg | assumption), apply zero_is_reg end theorem add_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (Hv : regular v) (Esu : s ≡ u) (Etv : t ≡ v) : sadd s t ≡ sadd u v := begin rewrite [↑sadd, ↑equiv at *], intros, rewrite [add_sub_comm, add_halves_double], apply rat.le.trans, apply abs_add_le_abs_add_abs, apply rat.add_le_add, apply Esu, apply Etv end set_option tactic.goal_names false theorem mul_bound_helper {s t : seq} (Hs : regular s) (Ht : regular t) (a b c : ℕ+) (j : ℕ+) : ∃ N : ℕ+, ∀ n : ℕ+, n ≥ N → abs (s (a * n) * t (b * n) - s (c * n) * t (c * n)) ≤ j⁻¹ := begin existsi pceil (((rat_of_pnat (K s)) * (b⁻¹ + c⁻¹) + (a⁻¹ + c⁻¹) * (rat_of_pnat (K t))) * (rat_of_pnat j)), intros n Hn, rewrite rewrite_helper4, apply rat.le.trans, apply abs_add_le_abs_add_abs, apply rat.le.trans, rotate 1, show n⁻¹ * ((rat_of_pnat (K s)) * (b⁻¹ + c⁻¹)) + n⁻¹ * ((a⁻¹ + c⁻¹) * (rat_of_pnat (K t))) ≤ j⁻¹, begin rewrite -rat.left_distrib, apply rat.le.trans, apply rat.mul_le_mul_of_nonneg_right, apply pceil_helper Hn, repeat (apply rat.mul_pos | apply rat.add_pos | apply inv_pos | apply rat_of_pnat_is_pos), apply rat.le_of_lt, apply rat.add_pos, apply rat.mul_pos, apply rat_of_pnat_is_pos, apply rat.add_pos, repeat apply inv_pos, apply rat.mul_pos, apply rat.add_pos, repeat apply inv_pos, apply rat_of_pnat_is_pos, have H : (rat_of_pnat (K s) * (b⁻¹ + c⁻¹) + (a⁻¹ + c⁻¹) * rat_of_pnat (K t)) ≠ 0, begin apply rat.ne_of_gt, repeat (apply rat.mul_pos | apply rat.add_pos | apply rat_of_pnat_is_pos | apply inv_pos), end, rewrite (rat.div_helper H), apply rat.le.refl end, apply rat.add_le_add, rewrite [-rat.mul_sub_left_distrib, abs_mul], apply rat.le.trans, apply rat.mul_le_mul, apply canon_bound, apply Hs, apply Ht, apply abs_nonneg, apply rat.le_of_lt, apply rat_of_pnat_is_pos, rewrite [*inv_mul_eq_mul_inv, -rat.right_distrib, -rat.mul.assoc, rat.mul.comm], apply rat.mul_le_mul_of_nonneg_left, apply rat.le.refl, apply rat.le_of_lt, apply inv_pos, rewrite [-rat.mul_sub_right_distrib, abs_mul], apply rat.le.trans, apply rat.mul_le_mul, apply Hs, apply canon_bound, apply Ht, apply abs_nonneg, apply add_invs_nonneg, rewrite [*inv_mul_eq_mul_inv, -rat.right_distrib, mul.comm _ n⁻¹, rat.mul.assoc], apply rat.mul_le_mul, repeat apply rat.le.refl, apply rat.le_of_lt, apply rat.mul_pos, apply rat.add_pos, repeat apply inv_pos, apply rat_of_pnat_is_pos, apply rat.le_of_lt, apply inv_pos end theorem s_distrib {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) : smul s (sadd t u) ≡ sadd (smul s t) (smul s u) := begin apply eq_of_bdd, repeat (assumption | apply reg_add_reg | apply reg_mul_reg), intros, let exh1 := λ a b c, mul_bound_helper Hs Ht a b c (2 * j), apply exists.elim, apply exh1, rotate 3, intros N1 HN1, let exh2 := λ d e f, mul_bound_helper Hs Hu d e f (2 * j), apply exists.elim, apply exh2, rotate 3, intros N2 HN2, existsi max N1 N2, intros n Hn, rewrite [↑sadd at *, ↑smul, rewrite_helper3, -add_halves j, -*pnat.mul.assoc at *], apply rat.le.trans, apply abs_add_le_abs_add_abs, apply rat.add_le_add, apply HN1, apply le.trans, apply max_left N1 N2, apply Hn, apply HN2, apply le.trans, apply max_right N1 N2, apply Hn end theorem mul_zero_equiv_zero {s t : seq} (Hs : regular s) (Ht : regular t) (Htz : t ≡ zero) : smul s t ≡ zero := begin apply eq_of_bdd_var, apply reg_mul_reg Hs Ht, apply zero_is_reg, intro ε Hε, let Bd := bdd_of_eq_var Ht zero_is_reg Htz (ε / (Kq s)) (pos_div_of_pos_of_pos Hε (Kq_bound_pos Hs)), cases Bd with [N, HN], existsi N, intro n Hn, rewrite [↑equiv at Htz, ↑zero at *, rat.sub_zero, ↑smul, abs_mul], apply rat.le.trans, apply rat.mul_le_mul, apply Kq_bound Hs, let HN' := λ n, (!rat.sub_zero ▸ HN n), apply HN', apply le.trans Hn, apply pnat.mul_le_mul_left, apply abs_nonneg, apply rat.le_of_lt (Kq_bound_pos Hs), rewrite (rat.mul_div_cancel' (ne.symm (rat.ne_of_lt (Kq_bound_pos Hs)))), apply rat.le.refl end theorem neg_bound_eq_bound (s : seq) : K (sneg s) = K s := by rewrite [↑K, ↑sneg, abs_neg] theorem neg_bound2_eq_bound2 (s t : seq) : K₂ s (sneg t) = K₂ s t := by rewrite [↑K₂, neg_bound_eq_bound] theorem sneg_def (s : seq) : (λ (n : ℕ+), -(s n)) = sneg s := rfl theorem mul_neg_equiv_neg_mul {s t : seq} : smul s (sneg t) ≡ sneg (smul s t) := begin rewrite [↑equiv, ↑smul], intros, rewrite [↑sneg, *sub_neg_eq_add, -neg_mul_eq_mul_neg, rat.add.comm, *sneg_def, *neg_bound2_eq_bound2, rat.sub_self, abs_zero], apply add_invs_nonneg end theorem equiv_of_diff_equiv_zero {s t : seq} (Hs : regular s) (Ht : regular t) (H : sadd s (sneg t) ≡ zero) : s ≡ t := begin have hsimp : ∀ a b c d e : ℚ, a + b + c + (d + e) = b + d + a + e + c, from λ a b c d e, calc a + b + c + (d + e) = a + b + (d + e) + c : rat.add.right_comm ... = a + (b + d) + e + c : by rewrite[-*rat.add.assoc] ... = b + d + a + e + c : rat.add.comm, apply eq_of_bdd Hs Ht, intros, let He := bdd_of_eq H, existsi 2 * (2 * (2 * j)), intros n Hn, rewrite (rewrite_helper5 _ _ (s (2 * n)) (t (2 * n))), apply rat.le.trans, apply abs_add_three, apply rat.le.trans, apply add_le_add_three, apply Hs, rewrite [↑sadd at He, ↑sneg at He, ↑zero at He], let He' := λ a b c, !rat.sub_zero ▸ (He a b c), apply (He' _ _ Hn), apply Ht, rewrite [hsimp, add_halves, -(add_halves j), -(add_halves (2 * j)), -*rat.add.assoc], apply rat.add_le_add_right, apply add_le_add_three, repeat (apply rat.le.trans; apply inv_ge_of_le Hn; apply inv_two_mul_le_inv) end theorem s_sub_cancel (s : seq) : sadd s (sneg s) ≡ zero := begin rewrite [↑equiv, ↑sadd, ↑sneg, ↑zero], intros, rewrite [rat.sub_zero, rat.sub_self, abs_zero], apply add_invs_nonneg end theorem diff_equiv_zero_of_equiv {s t : seq} (Hs : regular s) (Ht : regular t) (H : s ≡ t) : sadd s (sneg t) ≡ zero := begin apply equiv.trans, rotate 4, apply s_sub_cancel t, rotate 2, apply zero_is_reg, apply add_well_defined, repeat (assumption | apply reg_neg_reg), apply equiv.refl, repeat (assumption | apply reg_add_reg | apply reg_neg_reg) end theorem mul_well_defined_half1 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (Etu : t ≡ u) : smul s t ≡ smul s u := begin apply equiv_of_diff_equiv_zero, rotate 2, apply equiv.trans, rotate 3, apply equiv.symm, apply add_well_defined, rotate 4, apply equiv.refl, apply mul_neg_equiv_neg_mul, apply equiv.trans, rotate 3, apply equiv.symm, apply s_distrib, rotate 3, apply mul_zero_equiv_zero, rotate 2, apply diff_equiv_zero_of_equiv, repeat (assumption | apply reg_mul_reg | apply reg_neg_reg | apply reg_add_reg | apply zero_is_reg) end theorem mul_well_defined_half2 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (Est : s ≡ t) : smul s u ≡ smul t u := begin apply equiv.trans, rotate 3, apply s_mul_comm, apply equiv.trans, rotate 3, apply mul_well_defined_half1, rotate 2, apply Ht, rotate 1, apply s_mul_comm, repeat (assumption | apply reg_mul_reg) end theorem mul_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (Hv : regular v) (Esu : s ≡ u) (Etv : t ≡ v) : smul s t ≡ smul u v := begin apply equiv.trans, exact reg_mul_reg Hs Ht, exact reg_mul_reg Hs Hv, exact reg_mul_reg Hu Hv, apply mul_well_defined_half1, repeat assumption, apply mul_well_defined_half2, repeat assumption end theorem neg_well_defined {s t : seq} (Est : s ≡ t) : sneg s ≡ sneg t := begin rewrite [↑sneg, ↑equiv at *], intros, rewrite [-abs_neg, neg_sub, sub_neg_eq_add, rat.add.comm], apply Est end theorem one_is_reg : regular one := begin rewrite [↑regular, ↑one], intros, rewrite [rat.sub_self, abs_zero], apply add_invs_nonneg end theorem s_one_mul {s : seq} (H : regular s) : smul one s ≡ s := begin intros, rewrite [↑smul, ↑one, rat.one_mul], apply rat.le.trans, apply H, apply rat.add_le_add_right, apply inv_mul_le_inv end theorem s_mul_one {s : seq} (H : regular s) : smul s one ≡ s := begin apply equiv.trans, apply reg_mul_reg H one_is_reg, rotate 2, apply s_mul_comm, apply s_one_mul H, apply reg_mul_reg one_is_reg H, apply H end theorem zero_nequiv_one : ¬ zero ≡ one := begin intro Hz, rewrite [↑equiv at Hz, ↑zero at Hz, ↑one at Hz], let H := Hz (2 * 2), rewrite [rat.zero_sub at H, abs_neg at H, add_halves at H], have H' : pone⁻¹ ≤ 2⁻¹, from calc pone⁻¹ = 1 : by rewrite -pone_inv ... = abs 1 : abs_of_pos zero_lt_one ... ≤ 2⁻¹ : H, let H'' := ge_of_inv_le H', apply absurd (one_lt_two) (not_lt_of_ge H'') end --------------------------------------------- -- constant sequences definition const (a : ℚ) : seq := λ n, a theorem const_reg (a : ℚ) : regular (const a) := begin intros, rewrite [↑const, rat.sub_self, abs_zero], apply add_invs_nonneg end theorem add_consts (a b : ℚ) : sadd (const a) (const b) ≡ const (a + b) := by apply equiv.refl theorem mul_consts (a b : ℚ) : smul (const a) (const b) ≡ const (a * b) := by apply equiv.refl theorem neg_const (a : ℚ) : sneg (const a) ≡ const (-a) := by apply equiv.refl --------------------------------------------- -- create the type of regular sequences and lift theorems record reg_seq : Type := (sq : seq) (is_reg : regular sq) definition requiv (s t : reg_seq) := (reg_seq.sq s) ≡ (reg_seq.sq t) definition requiv.refl (s : reg_seq) : requiv s s := equiv.refl (reg_seq.sq s) definition requiv.symm (s t : reg_seq) (H : requiv s t) : requiv t s := equiv.symm (reg_seq.sq s) (reg_seq.sq t) H definition requiv.trans (s t u : reg_seq) (H : requiv s t) (H2 : requiv t u) : requiv s u := equiv.trans _ _ _ (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) H H2 definition radd (s t : reg_seq) : reg_seq := reg_seq.mk (sadd (reg_seq.sq s) (reg_seq.sq t)) (reg_add_reg (reg_seq.is_reg s) (reg_seq.is_reg t)) infix `+` := radd definition rmul (s t : reg_seq) : reg_seq := reg_seq.mk (smul (reg_seq.sq s) (reg_seq.sq t)) (reg_mul_reg (reg_seq.is_reg s) (reg_seq.is_reg t)) infix `*` := rmul definition rneg (s : reg_seq) : reg_seq := reg_seq.mk (sneg (reg_seq.sq s)) (reg_neg_reg (reg_seq.is_reg s)) prefix `-` := rneg definition radd_well_defined {s t u v : reg_seq} (H : requiv s u) (H2 : requiv t v) : requiv (s + t) (u + v) := add_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) (reg_seq.is_reg v) H H2 definition rmul_well_defined {s t u v : reg_seq} (H : requiv s u) (H2 : requiv t v) : requiv (s * t) (u * v) := mul_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) (reg_seq.is_reg v) H H2 definition rneg_well_defined {s t : reg_seq} (H : requiv s t) : requiv (-s) (-t) := neg_well_defined H theorem requiv_is_equiv : equivalence requiv := mk_equivalence requiv requiv.refl requiv.symm requiv.trans definition reg_seq.to_setoid [instance] : setoid reg_seq := ⦃setoid, r := requiv, iseqv := requiv_is_equiv⦄ definition r_zero : reg_seq := reg_seq.mk (zero) (zero_is_reg) definition r_one : reg_seq := reg_seq.mk (one) (one_is_reg) theorem r_add_comm (s t : reg_seq) : requiv (s + t) (t + s) := s_add_comm (reg_seq.sq s) (reg_seq.sq t) theorem r_add_assoc (s t u : reg_seq) : requiv (s + t + u) (s + (t + u)) := s_add_assoc (reg_seq.sq s) (reg_seq.sq t) (reg_seq.sq u) (reg_seq.is_reg s) (reg_seq.is_reg u) theorem r_zero_add (s : reg_seq) : requiv (r_zero + s) s := s_zero_add (reg_seq.sq s) (reg_seq.is_reg s) theorem r_add_zero (s : reg_seq) : requiv (s + r_zero) s := s_add_zero (reg_seq.sq s) (reg_seq.is_reg s) theorem r_neg_cancel (s : reg_seq) : requiv (-s + s) r_zero := s_neg_cancel (reg_seq.sq s) (reg_seq.is_reg s) theorem r_mul_comm (s t : reg_seq) : requiv (s * t) (t * s) := s_mul_comm (reg_seq.sq s) (reg_seq.sq t) theorem r_mul_assoc (s t u : reg_seq) : requiv (s * t * u) (s * (t * u)) := s_mul_assoc (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) theorem r_mul_one (s : reg_seq) : requiv (s * r_one) s := s_mul_one (reg_seq.is_reg s) theorem r_one_mul (s : reg_seq) : requiv (r_one * s) s := s_one_mul (reg_seq.is_reg s) theorem r_distrib (s t u : reg_seq) : requiv (s * (t + u)) (s * t + s * u) := s_distrib (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) theorem r_zero_nequiv_one : ¬ requiv r_zero r_one := zero_nequiv_one definition r_const (a : ℚ) : reg_seq := reg_seq.mk (const a) (const_reg a) theorem r_add_consts (a b : ℚ) : requiv (r_const a + r_const b) (r_const (a + b)) := add_consts a b theorem r_mul_consts (a b : ℚ) : requiv (r_const a * r_const b) (r_const (a * b)) := mul_consts a b theorem r_neg_const (a : ℚ) : requiv (-r_const a) (r_const (-a)) := neg_const a end s ---------------------------------------------- -- take quotients to get ℝ and show it's a comm ring open s definition real := quot reg_seq.to_setoid namespace real notation `ℝ` := real definition add (x y : ℝ) : ℝ := (quot.lift_on₂ x y (λ a b, quot.mk (a + b)) (take a b c d : reg_seq, take Hab : requiv a c, take Hcd : requiv b d, quot.sound (radd_well_defined Hab Hcd))) protected definition prio := num.pred rat.prio infix [priority real.prio] `+` := add definition mul (x y : ℝ) : ℝ := (quot.lift_on₂ x y (λ a b, quot.mk (a * b)) (take a b c d : reg_seq, take Hab : requiv a c, take Hcd : requiv b d, quot.sound (rmul_well_defined Hab Hcd))) infix [priority real.prio] `*` := mul definition neg (x : ℝ) : ℝ := (quot.lift_on x (λ a, quot.mk (-a)) (take a b : reg_seq, take Hab : requiv a b, quot.sound (rneg_well_defined Hab))) prefix [priority real.prio] `-` := neg definition zero : ℝ := quot.mk r_zero --notation 0 := zero definition one : ℝ := quot.mk r_one theorem add_comm (x y : ℝ) : x + y = y + x := quot.induction_on₂ x y (λ s t, quot.sound (r_add_comm s t)) theorem add_assoc (x y z : ℝ) : x + y + z = x + (y + z) := quot.induction_on₃ x y z (λ s t u, quot.sound (r_add_assoc s t u)) theorem zero_add (x : ℝ) : zero + x = x := quot.induction_on x (λ s, quot.sound (r_zero_add s)) theorem add_zero (x : ℝ) : x + zero = x := quot.induction_on x (λ s, quot.sound (r_add_zero s)) theorem neg_cancel (x : ℝ) : -x + x = zero := quot.induction_on x (λ s, quot.sound (r_neg_cancel s)) theorem mul_assoc (x y z : ℝ) : x * y * z = x * (y * z) := quot.induction_on₃ x y z (λ s t u, quot.sound (r_mul_assoc s t u)) theorem mul_comm (x y : ℝ) : x * y = y * x := quot.induction_on₂ x y (λ s t, quot.sound (r_mul_comm s t)) theorem one_mul (x : ℝ) : one * x = x := quot.induction_on x (λ s, quot.sound (r_one_mul s)) theorem mul_one (x : ℝ) : x * one = x := quot.induction_on x (λ s, quot.sound (r_mul_one s)) theorem distrib (x y z : ℝ) : x * (y + z) = x * y + x * z := quot.induction_on₃ x y z (λ s t u, quot.sound (r_distrib s t u)) theorem distrib_l (x y z : ℝ) : (x + y) * z = x * z + y * z := by rewrite [mul_comm, distrib, {x * _}mul_comm, {y * _}mul_comm] -- this shouldn't be necessary theorem zero_ne_one : ¬ zero = one := take H : zero = one, absurd (quot.exact H) (r_zero_nequiv_one) protected definition comm_ring [reducible] : algebra.comm_ring ℝ := begin fapply algebra.comm_ring.mk, exact add, exact add_assoc, exact zero, exact zero_add, exact add_zero, exact neg, exact neg_cancel, exact add_comm, exact mul, exact mul_assoc, apply one, apply one_mul, apply mul_one, apply distrib, apply distrib_l, apply mul_comm end open rat -- no coercions before definition of_rat [coercion] (a : ℚ) : ℝ := quot.mk (s.r_const a) theorem of_rat_add (a b : ℚ) : of_rat a + of_rat b = of_rat (a + b) := quot.sound (s.r_add_consts a b) theorem of_rat_neg (a : ℚ) : of_rat (-a) = -of_rat a := eq.symm (quot.sound (s.r_neg_const a)) theorem of_rat_mul (a b : ℚ) : of_rat a * of_rat b = of_rat (a * b) := quot.sound (s.r_mul_consts a b) theorem add_half_of_rat (n : ℕ+) : of_rat (2 * n)⁻¹ + of_rat (2 * n)⁻¹ = of_rat (n⁻¹) := by rewrite [of_rat_add, pnat.add_halves] end real