/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Leonardo de Moura -/ prelude import init.wf init.tactic init.num open eq.ops decidable or namespace nat notation `ℕ` := nat /- basic definitions on natural numbers -/ inductive le (a : ℕ) : ℕ → Prop := | refl : le a a | step : Π {b}, le a b → le a (succ b) infix `≤` := le attribute le.refl [refl] definition lt [reducible] (n m : ℕ) := succ n ≤ m definition ge [reducible] (n m : ℕ) := m ≤ n definition gt [reducible] (n m : ℕ) := succ m ≤ n infix `<` := lt infix `≥` := ge infix `>` := gt definition pred [unfold 1] (a : nat) : nat := nat.cases_on a zero (λ a₁, a₁) -- add is defined in init.num definition sub (a b : nat) : nat := nat.rec_on b a (λ b₁, pred) definition mul (a b : nat) : nat := nat.rec_on b zero (λ b₁ r, r + a) notation a - b := sub a b notation a * b := mul a b /- properties of ℕ -/ protected definition is_inhabited [instance] : inhabited nat := inhabited.mk zero protected definition has_decidable_eq [instance] : ∀ x y : nat, decidable (x = y) | has_decidable_eq zero zero := inl rfl | has_decidable_eq (succ x) zero := inr (by contradiction) | has_decidable_eq zero (succ y) := inr (by contradiction) | has_decidable_eq (succ x) (succ y) := match has_decidable_eq x y with | inl xeqy := inl (by rewrite xeqy) | inr xney := inr (λ h : succ x = succ y, by injection h with xeqy; exact absurd xeqy xney) end /- properties of inequality -/ theorem le_of_eq {n m : ℕ} (p : n = m) : n ≤ m := p ▸ !le.refl theorem le_succ (n : ℕ) : n ≤ succ n := le.step !le.refl theorem pred_le (n : ℕ) : pred n ≤ n := by cases n;repeat constructor theorem le_succ_iff_true [simp] (n : ℕ) : n ≤ succ n ↔ true := iff_true_intro (le_succ n) theorem pred_le_iff_true [simp] (n : ℕ) : pred n ≤ n ↔ true := iff_true_intro (pred_le n) theorem le.trans [trans] {n m k : ℕ} (H1 : n ≤ m) : m ≤ k → n ≤ k := le.rec H1 (λp H2, le.step) theorem le_succ_of_le {n m : ℕ} (H : n ≤ m) : n ≤ succ m := le.trans H !le_succ theorem le_of_succ_le {n m : ℕ} (H : succ n ≤ m) : n ≤ m := le.trans !le_succ H theorem le_of_lt {n m : ℕ} (H : n < m) : n ≤ m := le_of_succ_le H theorem succ_le_succ {n m : ℕ} : n ≤ m → succ n ≤ succ m := le.rec !le.refl (λa b, le.step) theorem pred_le_pred {n m : ℕ} : n ≤ m → pred n ≤ pred m := le.rec !le.refl (nat.rec (λa b, b) (λa b c, le.step)) theorem le_of_succ_le_succ {n m : ℕ} : succ n ≤ succ m → n ≤ m := pred_le_pred theorem le_succ_of_pred_le {n m : ℕ} : pred n ≤ m → n ≤ succ m := nat.cases_on n le.step (λa, succ_le_succ) theorem not_succ_le_zero (n : ℕ) : ¬succ n ≤ zero := by intro H; cases H theorem succ_le_zero_iff_false (n : ℕ) : succ n ≤ zero ↔ false := iff_false_intro !not_succ_le_zero theorem not_succ_le_self : Π {n : ℕ}, ¬succ n ≤ n := nat.rec !not_succ_le_zero (λa b c, b (le_of_succ_le_succ c)) theorem succ_le_self_iff_false [simp] (n : ℕ) : succ n ≤ n ↔ false := iff_false_intro not_succ_le_self theorem zero_le : ∀ (n : ℕ), 0 ≤ n := nat.rec !le.refl (λa, le.step) theorem zero_le_iff_true [simp] (n : ℕ) : 0 ≤ n ↔ true := iff_true_intro !zero_le theorem lt.step {n m : ℕ} : n < m → n < succ m := le.step theorem zero_lt_succ (n : ℕ) : 0 < succ n := succ_le_succ !zero_le theorem zero_lt_succ_iff_true [simp] (n : ℕ) : 0 < succ n ↔ true := iff_true_intro (zero_lt_succ n) theorem lt.trans [trans] {n m k : ℕ} (H1 : n < m) : m < k → n < k := le.trans (le.step H1) theorem lt_of_le_of_lt [trans] {n m k : ℕ} (H1 : n ≤ m) : m < k → n < k := le.trans (succ_le_succ H1) theorem lt_of_lt_of_le [trans] {n m k : ℕ} : n < m → m ≤ k → n < k := le.trans theorem lt.irrefl (n : ℕ) : ¬n < n := not_succ_le_self theorem lt_self_iff_false [simp] (n : ℕ) : n < n ↔ false := iff_false_intro (lt.irrefl n) theorem self_lt_succ (n : ℕ) : n < succ n := !le.refl theorem self_lt_succ_iff_true [simp] (n : ℕ) : n < succ n ↔ true := iff_true_intro (self_lt_succ n) theorem lt.base (n : ℕ) : n < succ n := !le.refl theorem le_lt_antisymm {n m : ℕ} (H1 : n ≤ m) (H2 : m < n) : false := !lt.irrefl (lt_of_le_of_lt H1 H2) theorem le.antisymm {n m : ℕ} (H1 : n ≤ m) : m ≤ n → n = m := le.cases_on H1 (λa, rfl) (λa b c, absurd (lt_of_le_of_lt b c) !lt.irrefl) theorem lt_le_antisymm {n m : ℕ} (H1 : n < m) (H2 : m ≤ n) : false := le_lt_antisymm H2 H1 theorem lt.asymm {n m : ℕ} (H1 : n < m) : ¬ m < n := le_lt_antisymm (le_of_lt H1) theorem not_lt_zero (a : ℕ) : ¬ a < zero := !not_succ_le_zero theorem lt_zero_iff_false [simp] (a : ℕ) : a < zero ↔ false := iff_false_intro (not_lt_zero a) theorem eq_or_lt_of_le {a b : ℕ} (H : a ≤ b) : a = b ∨ a < b := le.cases_on H (inl rfl) (λn h, inr (succ_le_succ h)) theorem le_of_eq_or_lt {a b : ℕ} (H : a = b ∨ a < b) : a ≤ b := or.elim H !le_of_eq !le_of_lt -- less-than is well-founded definition lt.wf [instance] : well_founded lt := well_founded.intro (nat.rec (!acc.intro (λn H, absurd H (not_lt_zero n))) (λn IH, !acc.intro (λm H, elim (eq_or_lt_of_le (le_of_succ_le_succ H)) (λe, eq.substr e IH) (acc.inv IH)))) definition measure {A : Type} : (A → ℕ) → A → A → Prop := inv_image lt definition measure.wf {A : Type} (f : A → ℕ) : well_founded (measure f) := inv_image.wf f lt.wf theorem succ_lt_succ {a b : ℕ} : a < b → succ a < succ b := succ_le_succ theorem lt_of_succ_lt {a b : ℕ} : succ a < b → a < b := le_of_succ_le theorem lt_of_succ_lt_succ {a b : ℕ} : succ a < succ b → a < b := le_of_succ_le_succ definition decidable_le [instance] : decidable_rel le := nat.rec (λm, (decidable.inl !zero_le)) (λn IH m, !nat.cases_on (decidable.inr (not_succ_le_zero n)) (λm, decidable.rec (λH, inl (succ_le_succ H)) (λH, inr (λa, H (le_of_succ_le_succ a))) (IH m))) definition decidable_lt [instance] : decidable_rel lt := _ definition decidable_gt [instance] : decidable_rel gt := _ definition decidable_ge [instance] : decidable_rel ge := _ theorem lt_or_ge (a b : ℕ) : a < b ∨ a ≥ b := nat.rec (inr !zero_le) (λn, or.rec (λh, inl (le_succ_of_le h)) (λh, elim (eq_or_lt_of_le h) (λe, inl (eq.subst e !le.refl)) inr)) b definition lt_ge_by_cases {a b : ℕ} {P : Type} (H1 : a < b → P) (H2 : a ≥ b → P) : P := by_cases H1 (λh, H2 (elim !lt_or_ge (λa, absurd a h) (λa, a))) definition lt.by_cases {a b : ℕ} {P : Type} (H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P := lt_ge_by_cases H1 (λh₁, lt_ge_by_cases H3 (λh₂, H2 (le.antisymm h₂ h₁))) theorem lt.trichotomy (a b : ℕ) : a < b ∨ a = b ∨ b < a := lt.by_cases (λH, inl H) (λH, inr (inl H)) (λH, inr (inr H)) theorem eq_or_lt_of_not_lt {a b : ℕ} (hnlt : ¬ a < b) : a = b ∨ b < a := or.rec_on (lt.trichotomy a b) (λ hlt, absurd hlt hnlt) (λ h, h) theorem lt_succ_of_le {a b : ℕ} : a ≤ b → a < succ b := succ_le_succ theorem lt_of_succ_le {a b : ℕ} (h : succ a ≤ b) : a < b := h theorem succ_le_of_lt {a b : ℕ} (h : a < b) : succ a ≤ b := h theorem succ_sub_succ_eq_sub [simp] (a b : ℕ) : succ a - succ b = a - b := nat.rec rfl (λ b, congr_arg pred) b theorem sub_eq_succ_sub_succ (a b : ℕ) : a - b = succ a - succ b := eq.symm !succ_sub_succ_eq_sub theorem zero_sub_eq_zero [simp] (a : ℕ) : zero - a = zero := nat.rec rfl (λ a, congr_arg pred) a theorem zero_eq_zero_sub (a : ℕ) : zero = zero - a := eq.symm !zero_sub_eq_zero theorem sub_le (a b : ℕ) : a - b ≤ a := nat.rec_on b !le.refl (λ b₁, le.trans !pred_le) theorem sub_le_iff_true [simp] (a b : ℕ) : a - b ≤ a ↔ true := iff_true_intro (sub_le a b) theorem sub_lt {a b : ℕ} (H1 : zero < a) (H2 : zero < b) : a - b < a := !nat.cases_on (λh, absurd h !lt.irrefl) (λa h, succ_le_succ (!nat.cases_on (λh, absurd h !lt.irrefl) (λb c, eq.substr !succ_sub_succ_eq_sub !sub_le) H2)) H1 theorem sub_lt_succ (a b : ℕ) : a - b < succ a := lt_succ_of_le !sub_le theorem sub_lt_succ_iff_true [simp] (a b : ℕ) : a - b < succ a ↔ true := iff_true_intro !sub_lt_succ end nat namespace nat_esimp open nat attribute add mul sub [unfold 2] attribute of_num [unfold 1] end nat_esimp