abbreviation Prop := Type.{0} inductive nat := zero : nat, succ : nat → nat inductive list (A : Type) := nil {} : list A, cons : A → list A → list A inductive list2 (A : Type) : Type := nil2 {} : list2 A, cons2 : A → list2 A → list2 A inductive and (A B : Prop) : Prop := and_intro : A → B → and A B inductive class {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop) (f : T1 → T2) := mk : (∀x y : T1, R1 x y → R2 (f x) (f y)) → class R1 R2 f