-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura import general_notation import logic.connectives logic.decidable logic.inhabited open eq eq.ops decidable inductive bool : Type := ff : bool, tt : bool namespace bool protected definition cases_on {p : bool → Prop} (b : bool) (H₁ : p ff) (H₂ : p tt) : p b := rec H₁ H₂ b definition cond {A : Type} (b : bool) (t e : A) := rec_on b e t theorem dichotomy (b : bool) : b = ff ∨ b = tt := cases_on b (or.inl rfl) (or.inr rfl) theorem cond.ff {A : Type} (t e : A) : cond ff t e = e := rfl theorem cond.tt {A : Type} (t e : A) : cond tt t e = t := rfl theorem ff_ne_tt : ¬ ff = tt := assume H : ff = tt, absurd (calc true = cond tt true false : !cond.tt⁻¹ ... = cond ff true false : {H⁻¹} ... = false : !cond.ff) true_ne_false definition bor (a b : bool) := rec_on a (rec_on b ff tt) tt theorem bor.tt_left (a : bool) : bor tt a = tt := rfl notation a || b := bor a b theorem bor.tt_right (a : bool) : a || tt = tt := cases_on a rfl rfl theorem bor.ff_left (a : bool) : ff || a = a := cases_on a rfl rfl theorem bor.ff_right (a : bool) : a || ff = a := cases_on a rfl rfl theorem bor.id (a : bool) : a || a = a := cases_on a rfl rfl theorem bor.comm (a b : bool) : a || b = b || a := cases_on a (cases_on b rfl rfl) (cases_on b rfl rfl) theorem bor.assoc (a b c : bool) : (a || b) || c = a || (b || c) := cases_on a (calc (ff || b) || c = b || c : {!bor.ff_left} ... = ff || (b || c) : !bor.ff_left⁻¹) (calc (tt || b) || c = tt || c : {!bor.tt_left} ... = tt : !bor.tt_left ... = tt || (b || c) : !bor.tt_left⁻¹) theorem bor.to_or {a b : bool} : a || b = tt → a = tt ∨ b = tt := rec_on a (assume H : ff || b = tt, have Hb : b = tt, from !bor.ff_left ▸ H, or.inr Hb) (assume H, or.inl rfl) definition band (a b : bool) := rec_on a ff (rec_on b ff tt) notation a && b := band a b theorem band.ff_left (a : bool) : ff && a = ff := rfl theorem band.tt_left (a : bool) : tt && a = a := cases_on a rfl rfl theorem band.ff_right (a : bool) : a && ff = ff := cases_on a rfl rfl theorem band.tt_right (a : bool) : a && tt = a := cases_on a rfl rfl theorem band.id (a : bool) : a && a = a := cases_on a rfl rfl theorem band.comm (a b : bool) : a && b = b && a := cases_on a (cases_on b rfl rfl) (cases_on b rfl rfl) theorem band.assoc (a b c : bool) : (a && b) && c = a && (b && c) := cases_on a (calc (ff && b) && c = ff && c : {!band.ff_left} ... = ff : !band.ff_left ... = ff && (b && c) : !band.ff_left⁻¹) (calc (tt && b) && c = b && c : {!band.tt_left} ... = tt && (b && c) : !band.tt_left⁻¹) theorem band.eq_tt_elim_left {a b : bool} (H : a && b = tt) : a = tt := or.elim (dichotomy a) (assume H0 : a = ff, absurd (calc ff = ff && b : !band.ff_left⁻¹ ... = a && b : {H0⁻¹} ... = tt : H) ff_ne_tt) (assume H1 : a = tt, H1) theorem band.eq_tt_elim_right {a b : bool} (H : a && b = tt) : b = tt := band.eq_tt_elim_left (!band.comm ⬝ H) definition bnot (a : bool) := rec_on a tt ff theorem bnot.bnot (a : bool) : bnot (bnot a) = a := cases_on a rfl rfl theorem bnot.false : bnot ff = tt := rfl theorem bnot.true : bnot tt = ff := rfl protected definition is_inhabited [instance] : inhabited bool := inhabited.mk ff protected definition has_decidable_eq [instance] : decidable_eq bool := take a b : bool, rec_on a (rec_on b (inl rfl) (inr ff_ne_tt)) (rec_on b (inr (ne.symm ff_ne_tt)) (inl rfl)) end bool