/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Set-based version of group_bigops. -/ import .group_bigops data.set.finite open set classical namespace set variables {A B : Type} /- Prod: product indexed by a set -/ section Prod variable [cmB : comm_monoid B] include cmB noncomputable definition Prod (s : set A) (f : A → B) : B := finset.Prod (to_finset s) f -- ∏ x ∈ s, f x notation `∏` binders `∈` s, r:(scoped f, prod s f) := r theorem Prod_empty (f : A → B) : Prod ∅ f = 1 := by rewrite [↑Prod, to_finset_empty] theorem Prod_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → B) : Prod s f = 1 := by rewrite [↑Prod, to_finset_of_not_finite nfins] theorem Prod_mul (s : set A) (f g : A → B) : Prod s (λx, f x * g x) = Prod s f * Prod s g := by rewrite [↑Prod, finset.Prod_mul] theorem Prod_insert_of_mem (f : A → B) {a : A} {s : set A} (H : a ∈ s) : Prod (insert a s) f = Prod s f := by_cases (suppose finite s, assert (#finset a ∈ set.to_finset s), by rewrite mem_to_finset_eq; apply H, by rewrite [↑Prod, to_finset_insert, finset.Prod_insert_of_mem f this]) (assume nfs : ¬ finite s, assert ¬ finite (insert a s), from assume H, nfs (finite_of_finite_insert H), by rewrite [Prod_of_not_finite nfs, Prod_of_not_finite this]) theorem Prod_insert_of_not_mem (f : A → B) {a : A} {s : set A} [finite s] (H : a ∉ s) : Prod (insert a s) f = f a * Prod s f := assert (#finset a ∉ set.to_finset s), by rewrite mem_to_finset_eq; apply H, by rewrite [↑Prod, to_finset_insert, finset.Prod_insert_of_not_mem f this] theorem Prod_union (f : A → B) {s₁ s₂ : set A} [finite s₁] [finite s₂] (disj : s₁ ∩ s₂ = ∅) : Prod (s₁ ∪ s₂) f = Prod s₁ f * Prod s₂ f := begin rewrite [↑Prod, to_finset_union], apply finset.Prod_union, apply finset.eq_of_to_set_eq_to_set, rewrite [finset.to_set_inter, *to_set_to_finset, finset.to_set_empty, disj] end theorem Prod_ext {s : set A} {f g : A → B} (H : ∀{x}, x ∈ s → f x = g x) : Prod s f = Prod s g := by_cases (suppose finite s, by esimp [Prod]; apply finset.Prod_ext; intro x; rewrite [mem_to_finset_eq]; apply H) (assume nfs : ¬ finite s, by rewrite [*Prod_of_not_finite nfs]) theorem Prod_one (s : set A) : Prod s (λ x, 1) = (1:B) := by rewrite [↑Prod, finset.Prod_one] end Prod /- Sum -/ section Sum variable [acmB : add_comm_monoid B] include acmB local attribute add_comm_monoid.to_comm_monoid [trans_instance] noncomputable definition Sum (s : set A) (f : A → B) : B := Prod s f -- ∑ x ∈ s, f x notation `∑` binders `∈` s, r:(scoped f, Sum s f) := r theorem Sum_empty (f : A → B) : Sum ∅ f = 0 := Prod_empty f theorem Sum_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → B) : Sum s f = 0 := Prod_of_not_finite nfins f theorem Sum_add (s : set A) (f g : A → B) : Sum s (λx, f x + g x) = Sum s f + Sum s g := Prod_mul s f g theorem Sum_insert_of_mem (f : A → B) {a : A} {s : set A} (H : a ∈ s) : Sum (insert a s) f = Sum s f := Prod_insert_of_mem f H theorem Sum_insert_of_not_mem (f : A → B) {a : A} {s : set A} [finite s] (H : a ∉ s) : Sum (insert a s) f = f a + Sum s f := Prod_insert_of_not_mem f H theorem Sum_union (f : A → B) {s₁ s₂ : set A} [finite s₁] [finite s₂] (disj : s₁ ∩ s₂ = ∅) : Sum (s₁ ∪ s₂) f = Sum s₁ f + Sum s₂ f := Prod_union f disj theorem Sum_ext {s : set A} {f g : A → B} (H : ∀x, x ∈ s → f x = g x) : Sum s f = Sum s g := Prod_ext H theorem Sum_zero (s : set A) : Sum s (λ x, 0) = (0:B) := Prod_one s end Sum end set