Import kernel. Import macros. Variable Nat : Type. Alias ℕ : Nat. Namespace Nat. Builtin numeral. Builtin add : Nat → Nat → Nat. Infixl 65 + : add. Builtin mul : Nat → Nat → Nat. Infixl 70 * : mul. Builtin le : Nat → Nat → Bool. Infix 50 <= : le. Infix 50 ≤ : le. Definition ge (a b : Nat) := b ≤ a. Infix 50 >= : ge. Infix 50 ≥ : ge. Definition lt (a b : Nat) := ¬ (a ≥ b). Infix 50 < : lt. Definition gt (a b : Nat) := ¬ (a ≤ b). Infix 50 > : gt. Definition id (a : Nat) := a. Notation 55 | _ | : id. Axiom SuccInj {a b : Nat} (H : a + 1 = b + 1) : a = b Axiom PlusZero (a : Nat) : a + 0 = a. Axiom PlusSucc (a b : Nat) : a + (b + 1) = (a + b) + 1. Axiom MulZero (a : Nat) : a * 0 = 0. Axiom MulSucc (a b : Nat) : a * (b + 1) = a * b + a. Axiom LeDef (a b : Nat) : a ≤ b ⇔ ∃ c : Nat, a + c = b. Axiom Induction {P : Nat → Bool} (Hb : P 0) (iH : Π (n : Nat) (H : P n), P (n + 1)) (a : Nat) : P a. Theorem ZeroNeOne : 0 ≠ 1 := Trivial. Theorem ZeroPlus (a : Nat) : 0 + a = a := Induction (show 0 + 0 = 0, Trivial) (λ (n : Nat) (iH : 0 + n = n), calc 0 + (n + 1) = (0 + n) + 1 : PlusSucc 0 n ... = n + 1 : { iH }) a. Theorem SuccPlus (a b : Nat) : (a + 1) + b = (a + b) + 1 := Induction (calc (a + 1) + 0 = a + 1 : PlusZero (a + 1) ... = (a + 0) + 1 : { Symm (PlusZero a) }) (λ (n : Nat) (iH : (a + 1) + n = (a + n) + 1), calc (a + 1) + (n + 1) = ((a + 1) + n) + 1 : PlusSucc (a + 1) n ... = ((a + n) + 1) + 1 : { iH } ... = (a + (n + 1)) + 1 : { show (a + n) + 1 = a + (n + 1), Symm (PlusSucc a n) }) b. Theorem PlusComm (a b : Nat) : a + b = b + a := Induction (calc a + 0 = a : PlusZero a ... = 0 + a : Symm (ZeroPlus a)) (λ (n : Nat) (iH : a + n = n + a), calc a + (n + 1) = (a + n) + 1 : PlusSucc a n ... = (n + a) + 1 : { iH } ... = (n + 1) + a : Symm (SuccPlus n a)) b. Theorem PlusAssoc (a b c : Nat) : a + (b + c) = (a + b) + c := Induction (calc 0 + (b + c) = b + c : ZeroPlus (b + c) ... = (0 + b) + c : { Symm (ZeroPlus b) }) (λ (n : Nat) (iH : n + (b + c) = (n + b) + c), calc (n + 1) + (b + c) = (n + (b + c)) + 1 : SuccPlus n (b + c) ... = ((n + b) + c) + 1 : { iH } ... = ((n + b) + 1) + c : Symm (SuccPlus (n + b) c) ... = ((n + 1) + b) + c : { show (n + b) + 1 = (n + 1) + b, Symm (SuccPlus n b) }) a. Theorem ZeroMul (a : Nat) : 0 * a = 0 := Induction (show 0 * 0 = 0, Trivial) (λ (n : Nat) (iH : 0 * n = 0), calc 0 * (n + 1) = (0 * n) + 0 : MulSucc 0 n ... = 0 + 0 : { iH } ... = 0 : Trivial) a. Theorem SuccMul (a b : Nat) : (a + 1) * b = a * b + b := Induction (calc (a + 1) * 0 = 0 : MulZero (a + 1) ... = a * 0 : Symm (MulZero a) ... = a * 0 + 0 : Symm (PlusZero (a * 0))) (λ (n : Nat) (iH : (a + 1) * n = a * n + n), calc (a + 1) * (n + 1) = (a + 1) * n + (a + 1) : MulSucc (a + 1) n ... = a * n + n + (a + 1) : { iH } ... = a * n + n + a + 1 : PlusAssoc (a * n + n) a 1 ... = a * n + (n + a) + 1 : { show a * n + n + a = a * n + (n + a), Symm (PlusAssoc (a * n) n a) } ... = a * n + (a + n) + 1 : { PlusComm n a } ... = a * n + a + n + 1 : { PlusAssoc (a * n) a n } ... = a * (n + 1) + n + 1 : { Symm (MulSucc a n) } ... = a * (n + 1) + (n + 1) : Symm (PlusAssoc (a * (n + 1)) n 1)) b. Theorem OneMul (a : Nat) : 1 * a = a := Induction (show 1 * 0 = 0, Trivial) (λ (n : Nat) (iH : 1 * n = n), calc 1 * (n + 1) = 1 * n + 1 : MulSucc 1 n ... = n + 1 : { iH }) a. Theorem MulOne (a : Nat) : a * 1 = a := Induction (show 0 * 1 = 0, Trivial) (λ (n : Nat) (iH : n * 1 = n), calc (n + 1) * 1 = n * 1 + 1 : SuccMul n 1 ... = n + 1 : { iH }) a. Theorem MulComm (a b : Nat) : a * b = b * a := Induction (calc a * 0 = 0 : MulZero a ... = 0 * a : Symm (ZeroMul a)) (λ (n : Nat) (iH : a * n = n * a), calc a * (n + 1) = a * n + a : MulSucc a n ... = n * a + a : { iH } ... = (n + 1) * a : Symm (SuccMul n a)) b. Theorem Distribute (a b c : Nat) : a * (b + c) = a * b + a * c := Induction (calc 0 * (b + c) = 0 : ZeroMul (b + c) ... = 0 + 0 : Trivial ... = 0 * b + 0 : { Symm (ZeroMul b) } ... = 0 * b + 0 * c : { Symm (ZeroMul c) }) (λ (n : Nat) (iH : n * (b + c) = n * b + n * c), calc (n + 1) * (b + c) = n * (b + c) + (b + c) : SuccMul n (b + c) ... = n * b + n * c + (b + c) : { iH } ... = n * b + n * c + b + c : PlusAssoc (n * b + n * c) b c ... = n * b + (n * c + b) + c : { Symm (PlusAssoc (n * b) (n * c) b) } ... = n * b + (b + n * c) + c : { PlusComm (n * c) b } ... = n * b + b + n * c + c : { PlusAssoc (n * b) b (n * c) } ... = (n + 1) * b + n * c + c : { Symm (SuccMul n b) } ... = (n + 1) * b + (n * c + c) : Symm (PlusAssoc ((n + 1) * b) (n * c) c) ... = (n + 1) * b + (n + 1) * c : { Symm (SuccMul n c) }) a. Theorem Distribute2 (a b c : Nat) : (a + b) * c = a * c + b * c := calc (a + b) * c = c * (a + b) : MulComm (a + b) c ... = c * a + c * b : Distribute c a b ... = a * c + c * b : { MulComm c a } ... = a * c + b * c : { MulComm c b }. Theorem MulAssoc (a b c : Nat) : a * (b * c) = a * b * c := Induction (calc 0 * (b * c) = 0 : ZeroMul (b * c) ... = 0 * c : Symm (ZeroMul c) ... = (0 * b) * c : { Symm (ZeroMul b) }) (λ (n : Nat) (iH : n * (b * c) = n * b * c), calc (n + 1) * (b * c) = n * (b * c) + (b * c) : SuccMul n (b * c) ... = n * b * c + (b * c) : { iH } ... = (n * b + b) * c : Symm (Distribute2 (n * b) b c) ... = (n + 1) * b * c : { Symm (SuccMul n b) }) a. Theorem PlusInj' (a b c : Nat) : a + b = a + c ⇒ b = c := Induction (assume H : 0 + b = 0 + c, calc b = 0 + b : Symm (ZeroPlus b) ... = 0 + c : H ... = c : ZeroPlus c) (λ (n : Nat) (iH : n + b = n + c ⇒ b = c), assume H : n + 1 + b = n + 1 + c, let L1 : n + b + 1 = n + c + 1 := (calc n + b + 1 = n + (b + 1) : Symm (PlusAssoc n b 1) ... = n + (1 + b) : { PlusComm b 1 } ... = n + 1 + b : PlusAssoc n 1 b ... = n + 1 + c : H ... = n + (1 + c) : Symm (PlusAssoc n 1 c) ... = n + (c + 1) : { PlusComm 1 c } ... = n + c + 1 : PlusAssoc n c 1), L2 : n + b = n + c := SuccInj L1 in MP iH L2) a. Theorem PlusInj {a b c : Nat} (H : a + b = a + c) : b = c := MP (PlusInj' a b c) H. Theorem LeIntro {a b c : Nat} (H : a + c = b) : a ≤ b := EqMP (Symm (LeDef a b)) (show (∃ x, a + x = b), ExistsIntro c H). Theorem LeElim {a b : Nat} (H : a ≤ b) : ∃ x, a + x = b := EqMP (LeDef a b) H. Theorem LeRefl (a : Nat) : a ≤ a := LeIntro (PlusZero a). Theorem LeZero (a : Nat) : 0 ≤ a := LeIntro (ZeroPlus a). Theorem LeTrans {a b c : Nat} (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c := ExistsElim (LeElim H1) (λ (w1 : Nat) (Hw1 : a + w1 = b), ExistsElim (LeElim H2) (λ (w2 : Nat) (Hw2 : b + w2 = c), LeIntro (calc a + (w1 + w2) = a + w1 + w2 : PlusAssoc a w1 w2 ... = b + w2 : { Hw1 } ... = c : Hw2))). Theorem LeInj {a b : Nat} (H : a ≤ b) (c : Nat) : a + c ≤ b + c := ExistsElim (LeElim H) (λ (w : Nat) (Hw : a + w = b), LeIntro (calc a + c + w = a + (c + w) : Symm (PlusAssoc a c w) ... = a + (w + c) : { PlusComm c w } ... = a + w + c : PlusAssoc a w c ... = b + c : { Hw })). SetOpaque ge true. SetOpaque lt true. SetOpaque gt true. SetOpaque id true. EndNamespace.