/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Cardinality calculations for finite sets. -/ import .to_set .bigops data.set.function data.nat.power open nat eq.ops namespace finset variables {A B : Type} variables [deceqA : decidable_eq A] [deceqB : decidable_eq B] include deceqA theorem card_add_card (s₁ s₂ : finset A) : card s₁ + card s₂ = card (s₁ ∪ s₂) + card (s₁ ∩ s₂) := begin induction s₂ with a s₂ ans2 IH, show card s₁ + card (∅:finset A) = card (s₁ ∪ ∅) + card (s₁ ∩ ∅), by rewrite [union_empty, card_empty, inter_empty], show card s₁ + card (insert a s₂) = card (s₁ ∪ (insert a s₂)) + card (s₁ ∩ (insert a s₂)), from decidable.by_cases (assume as1 : a ∈ s₁, assert H : a ∉ s₁ ∩ s₂, from assume H', ans2 (mem_of_mem_inter_right H'), begin rewrite [card_insert_of_not_mem ans2, union_comm, -insert_union, union_comm], rewrite [insert_union, insert_eq_of_mem as1, insert_eq, inter_distrib_left, inter_comm], rewrite [singleton_inter_of_mem as1, -insert_eq, card_insert_of_not_mem H, -*add.assoc], rewrite IH end) (assume ans1 : a ∉ s₁, assert H : a ∉ s₁ ∪ s₂, from assume H', or.elim (mem_or_mem_of_mem_union H') (assume as1, ans1 as1) (assume as2, ans2 as2), begin rewrite [card_insert_of_not_mem ans2, union_comm, -insert_union, union_comm], rewrite [card_insert_of_not_mem H, insert_eq, inter_distrib_left, inter_comm], rewrite [singleton_inter_of_not_mem ans1, empty_union, add.right_comm], rewrite [-add.assoc, IH] end) end theorem card_union (s₁ s₂ : finset A) : card (s₁ ∪ s₂) = card s₁ + card s₂ - card (s₁ ∩ s₂) := calc card (s₁ ∪ s₂) = card (s₁ ∪ s₂) + card (s₁ ∩ s₂) - card (s₁ ∩ s₂) : nat.add_sub_cancel ... = card s₁ + card s₂ - card (s₁ ∩ s₂) : card_add_card theorem card_union_of_disjoint {s₁ s₂ : finset A} (H : s₁ ∩ s₂ = ∅) : card (s₁ ∪ s₂) = card s₁ + card s₂ := by rewrite [card_union, H] theorem card_eq_card_add_card_diff {s₁ s₂ : finset A} (H : s₁ ⊆ s₂) : card s₂ = card s₁ + card (s₂ \ s₁) := have H1 : s₁ ∩ (s₂ \ s₁) = ∅, from inter_eq_empty (take x, assume H1 H2, not_mem_of_mem_diff H2 H1), calc card s₂ = card (s₁ ∪ (s₂ \ s₁)) : union_diff_cancel H ... = card s₁ + card (s₂ \ s₁) : card_union_of_disjoint H1 theorem card_le_card_of_subset {s₁ s₂ : finset A} (H : s₁ ⊆ s₂) : card s₁ ≤ card s₂ := calc card s₂ = card s₁ + card (s₂ \ s₁) : card_eq_card_add_card_diff H ... ≥ card s₁ : le_add_right section card_image open set include deceqB theorem card_image_eq_of_inj_on {f : A → B} {s : finset A} (H1 : inj_on f (ts s)) : card (image f s) = card s := begin induction s with a t H IH, { rewrite [card_empty] }, { have H2 : ts t ⊆ ts (insert a t), by rewrite [-subset_eq_to_set_subset]; apply subset_insert, have H3 : card (image f t) = card t, from IH (inj_on_of_inj_on_of_subset H1 H2), have H4 : f a ∉ image f t, proof assume H5 : f a ∈ image f t, obtain x (H6l : x ∈ t) (H6r : f x = f a), from exists_of_mem_image H5, have H7 : x = a, from H1 (mem_insert_of_mem _ H6l) !mem_insert H6r, show false, from H (H7 ▸ H6l) qed, calc card (image f (insert a t)) = card (insert (f a) (image f t)) : image_insert ... = card (image f t) + 1 : card_insert_of_not_mem H4 ... = card t + 1 : H3 ... = card (insert a t) : card_insert_of_not_mem H } end lemma card_le_of_inj_on (a : finset A) (b : finset B) (Pex : ∃ f : A → B, set.inj_on f (ts a) ∧ (image f a ⊆ b)): card a ≤ card b := obtain f Pinj, from Pex, assert Psub : _, from and.right Pinj, assert Ple : card (image f a) ≤ card b, from card_le_card_of_subset Psub, by rewrite [(card_image_eq_of_inj_on (and.left Pinj))⁻¹]; exact Ple theorem card_image_le (f : A → B) (s : finset A) : card (image f s) ≤ card s := finset.induction_on s (by rewrite finset.image_empty) (take a s', assume Ha : a ∉ s', assume IH : card (image f s') ≤ card s', begin rewrite [image_insert, card_insert_of_not_mem Ha], apply le.trans !card_insert_le, apply add_le_add_right IH end) theorem inj_on_of_card_image_eq {f : A → B} {s : finset A} : card (image f s) = card s → inj_on f (ts s) := finset.induction_on s (by intro H; rewrite to_set_empty; apply inj_on_empty) (begin intro a s' Ha IH, rewrite [image_insert, card_insert_of_not_mem Ha, to_set_insert], assume H1 : card (insert (f a) (image f s')) = card s' + 1, show inj_on f (set.insert a (ts s')), from decidable.by_cases (assume Hfa : f a ∈ image f s', have H2 : card (image f s') = card s' + 1, by rewrite [card_insert_of_mem Hfa at H1]; assumption, absurd (calc card (image f s') ≤ card s' : !card_image_le ... < card s' + 1 : lt_succ_self ... = card (image f s') : H2) !lt.irrefl) (assume Hnfa : f a ∉ image f s', have H2 : card (image f s') + 1 = card s' + 1, by rewrite [card_insert_of_not_mem Hnfa at H1]; assumption, have H3 : card (image f s') = card s', from add.right_cancel H2, have injf : inj_on f (ts s'), from IH H3, show inj_on f (set.insert a (ts s')), from take x1 x2, assume Hx1 : x1 ∈ set.insert a (ts s'), assume Hx2 : x2 ∈ set.insert a (ts s'), assume feq : f x1 = f x2, or.elim Hx1 (assume Hx1' : x1 = a, or.elim Hx2 (assume Hx2' : x2 = a, by rewrite [Hx1', Hx2']) (assume Hx2' : x2 ∈ ts s', have Hfa : f a ∈ image f s', by rewrite [-Hx1', feq]; apply mem_image_of_mem f Hx2', absurd Hfa Hnfa)) (assume Hx1' : x1 ∈ ts s', or.elim Hx2 (assume Hx2' : x2 = a, have Hfa : f a ∈ image f s', by rewrite [-Hx2', -feq]; apply mem_image_of_mem f Hx1', absurd Hfa Hnfa) (assume Hx2' : x2 ∈ ts s', injf Hx1' Hx2' feq))) end) end card_image theorem card_pos_of_mem {a : A} {s : finset A} (H : a ∈ s) : card s > 0 := begin induction s with a s' H1 IH, { contradiction }, { rewrite (card_insert_of_not_mem H1), apply succ_pos } end theorem eq_of_card_eq_of_subset {s₁ s₂ : finset A} (Hcard : card s₁ = card s₂) (Hsub : s₁ ⊆ s₂) : s₁ = s₂ := have H : card s₁ + 0 = card s₁ + card (s₂ \ s₁), by rewrite [Hcard at {1}, card_eq_card_add_card_diff Hsub], assert H1 : s₂ \ s₁ = ∅, from eq_empty_of_card_eq_zero (add.left_cancel H)⁻¹, by rewrite [-union_diff_cancel Hsub, H1, union_empty] lemma exists_two_of_card_gt_one {s : finset A} : 1 < card s → ∃ a b, a ∈ s ∧ b ∈ s ∧ a ≠ b := begin intro h, induction s with a s nain ih₁, {exact absurd h dec_trivial}, {induction s with b s nbin ih₂, {exact absurd h dec_trivial}, clear ih₁ ih₂, existsi a, existsi b, split, {apply mem_insert}, split, {apply mem_insert_of_mem _ !mem_insert}, {intro aeqb, subst a, exact absurd !mem_insert nain}} end theorem Sum_const_eq_card_mul (s : finset A) (n : nat) : (∑ x ∈ s, n) = card s * n := begin induction s with a s' H IH, rewrite [Sum_empty, card_empty, zero_mul], rewrite [Sum_insert_of_not_mem _ H, IH, card_insert_of_not_mem H, add.comm, right_distrib, one_mul] end theorem Sum_one_eq_card (s : finset A) : (∑ x ∈ s, (1 : nat)) = card s := eq.trans !Sum_const_eq_card_mul !mul_one section deceqB include deceqB theorem card_Union_of_disjoint (s : finset A) (f : A → finset B) : (∀{a₁ a₂}, a₁ ∈ s → a₂ ∈ s → a₁ ≠ a₂ → f a₁ ∩ f a₂ = ∅) → card (⋃ x ∈ s, f x) = ∑ x ∈ s, card (f x) := finset.induction_on s (assume H, by rewrite [Union_empty, Sum_empty, card_empty]) (take a s', assume H : a ∉ s', assume IH, assume H1 : ∀ {a₁ a₂ : A}, a₁ ∈ insert a s' → a₂ ∈ insert a s' → a₁ ≠ a₂ → f a₁ ∩ f a₂ = ∅, have H2 : ∀ a₁ a₂ : A, a₁ ∈ s' → a₂ ∈ s' → a₁ ≠ a₂ → f a₁ ∩ f a₂ = ∅, from take a₁ a₂, assume H3 H4 H5, H1 (!mem_insert_of_mem H3) (!mem_insert_of_mem H4) H5, assert H6 : card (⋃ (x : A) ∈ s', f x) = ∑ (x : A) ∈ s', card (f x), from IH H2, assert H7 : ∀ x, x ∈ s' → f a ∩ f x = ∅, from take x, assume xs', have anex : a ≠ x, from assume aex, (eq.subst aex H) xs', H1 !mem_insert (!mem_insert_of_mem xs') anex, assert H8 : f a ∩ (⋃ (x : A) ∈ s', f x) = ∅, from calc f a ∩ (⋃ (x : A) ∈ s', f x) = (⋃ (x : A) ∈ s', f a ∩ f x) : by rewrite inter_Union ... = (⋃ (x : A) ∈ s', ∅) : by rewrite [Union_ext H7] ... = ∅ : by rewrite Union_empty', by rewrite [Union_insert, Sum_insert_of_not_mem _ H, card_union_of_disjoint H8, H6]) end deceqB lemma dvd_Sum_of_dvd (f : A → nat) (n : nat) (s : finset A) : (∀ a, a ∈ s → n ∣ f a) → n ∣ Sum s f := begin induction s with a s nain ih, {intros, rewrite [Sum_empty], apply dvd_zero}, {intro h, have h₁ : ∀ a, a ∈ s → n ∣ f a, from take a, assume ains, h a (mem_insert_of_mem _ ains), have h₂ : n ∣ Sum s f, from ih h₁, have h₃ : n ∣ f a, from h a !mem_insert, rewrite [Sum_insert_of_not_mem f nain], apply dvd_add h₃ h₂} end end finset