/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Theorems about sums/coproducts/disjoint unions -/ open lift eq is_equiv equiv equiv.ops prod prod.ops is_trunc sigma bool namespace sum universe variables u v variables {A : Type.{u}} {B : Type.{v}} (z z' : A + B) protected definition eta : sum.rec inl inr z = z := by induction z; all_goals reflexivity protected definition code [unfold 3 4] : A + B → A + B → Type.{max u v} | code (inl a) (inl a') := lift.{u v} (a = a') | code (inr b) (inr b') := lift.{v u} (b = b') | code _ _ := lift empty protected definition decode [unfold 3 4] : Π(z z' : A + B), sum.code z z' → z = z' | decode (inl a) (inl a') := λc, ap inl (down c) | decode (inl a) (inr b') := λc, empty.elim (down c) _ | decode (inr b) (inl a') := λc, empty.elim (down c) _ | decode (inr b) (inr b') := λc, ap inr (down c) variables {z z'} protected definition encode [unfold 3 4 5] (p : z = z') : sum.code z z' := by induction p; induction z; all_goals exact up idp variables (z z') definition sum_eq_equiv [constructor] : (z = z') ≃ sum.code z z' := equiv.MK sum.encode !sum.decode abstract begin intro c, induction z with a b, all_goals induction z' with a' b', all_goals (esimp at *; induction c with c), all_goals induction c, -- c either has type empty or a path all_goals reflexivity end end abstract begin intro p, induction p, induction z, all_goals reflexivity end end section variables {a a' : A} {b b' : B} definition eq_of_inl_eq_inl [unfold 5] (p : inl a = inl a' :> A + B) : a = a' := down (sum.encode p) definition eq_of_inr_eq_inr [unfold 5] (p : inr b = inr b' :> A + B) : b = b' := down (sum.encode p) definition empty_of_inl_eq_inr (p : inl a = inr b) : empty := down (sum.encode p) definition empty_of_inr_eq_inl (p : inr b = inl a) : empty := down (sum.encode p) definition sum_transport {P Q : A → Type} (p : a = a') (z : P a + Q a) : p ▸ z = sum.rec (λa, inl (p ▸ a)) (λb, inr (p ▸ b)) z := by induction p; induction z; all_goals reflexivity end variables {A' B' : Type} (f : A → A') (g : B → B') definition sum_functor [unfold 7] : A + B → A' + B' | sum_functor (inl a) := inl (f a) | sum_functor (inr b) := inr (g b) definition is_equiv_sum_functor [constructor] [Hf : is_equiv f] [Hg : is_equiv g] : is_equiv (sum_functor f g) := adjointify (sum_functor f g) (sum_functor f⁻¹ g⁻¹) abstract begin intro z, induction z, all_goals (esimp; (apply ap inl | apply ap inr); apply right_inv) end end abstract begin intro z, induction z, all_goals (esimp; (apply ap inl | apply ap inr); apply right_inv) end end definition sum_equiv_sum_of_is_equiv [constructor] [Hf : is_equiv f] [Hg : is_equiv g] : A + B ≃ A' + B' := equiv.mk _ (is_equiv_sum_functor f g) definition sum_equiv_sum [constructor] (f : A ≃ A') (g : B ≃ B') : A + B ≃ A' + B' := equiv.mk _ (is_equiv_sum_functor f g) definition sum_equiv_sum_left [constructor] (g : B ≃ B') : A + B ≃ A + B' := sum_equiv_sum equiv.refl g definition sum_equiv_sum_right [constructor] (f : A ≃ A') : A + B ≃ A' + B := sum_equiv_sum f equiv.refl definition flip [unfold 3] : A + B → B + A | flip (inl a) := inr a | flip (inr b) := inl b definition sum_comm_equiv [constructor] (A B : Type) : A + B ≃ B + A := begin fapply equiv.MK, exact flip, exact flip, all_goals (intro z; induction z; all_goals reflexivity) end -- definition sum_assoc_equiv (A B C : Type) : A + (B + C) ≃ (A + B) + C := -- begin -- fapply equiv.MK, -- all_goals try (intro z; induction z with u v; -- all_goals try induction u; all_goals try induction v), -- all_goals try (repeat (apply inl | apply inr | assumption); now), -- end definition sum_empty_equiv [constructor] (A : Type) : A + empty ≃ A := begin fapply equiv.MK, intro z, induction z, assumption, contradiction, exact inl, intro a, reflexivity, intro z, induction z, reflexivity, contradiction end definition sum_rec_unc {P : A + B → Type} (fg : (Πa, P (inl a)) × (Πb, P (inr b))) : Πz, P z := sum.rec fg.1 fg.2 definition is_equiv_sum_rec [constructor] (P : A + B → Type) : is_equiv (sum_rec_unc : (Πa, P (inl a)) × (Πb, P (inr b)) → Πz, P z) := begin apply adjointify sum_rec_unc (λf, (λa, f (inl a), λb, f (inr b))), intro f, apply eq_of_homotopy, intro z, focus (induction z; all_goals reflexivity), intro h, induction h with f g, reflexivity end definition equiv_sum_rec [constructor] (P : A + B → Type) : (Πa, P (inl a)) × (Πb, P (inr b)) ≃ Πz, P z := equiv.mk _ !is_equiv_sum_rec definition imp_prod_imp_equiv_sum_imp [constructor] (A B C : Type) : (A → C) × (B → C) ≃ (A + B → C) := !equiv_sum_rec definition is_trunc_sum (n : trunc_index) [HA : is_trunc (n.+2) A] [HB : is_trunc (n.+2) B] : is_trunc (n.+2) (A + B) := begin apply is_trunc_succ_intro, intro z z', apply is_trunc_equiv_closed_rev, apply sum_eq_equiv, induction z with a b, all_goals induction z' with a' b', all_goals esimp, all_goals exact _, end /- Sums are equivalent to dependent sigmas where the first component is a bool. -/ definition sum_of_sigma_bool {A B : Type} (v : Σ(b : bool), bool.rec A B b) : A + B := by induction v with b x; induction b; exact inl x; exact inr x definition sigma_bool_of_sum {A B : Type} (z : A + B) : Σ(b : bool), bool.rec A B b := by induction z with a b; exact ⟨ff, a⟩; exact ⟨tt, b⟩ definition sum_equiv_sigma_bool [constructor] (A B : Type) : A + B ≃ Σ(b : bool), bool.rec A B b := equiv.MK sigma_bool_of_sum sum_of_sigma_bool begin intro v, induction v with b x, induction b, all_goals reflexivity end begin intro z, induction z with a b, all_goals reflexivity end end sum