/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include "kernel/builtin.h" #include "kernel/environment.h" #include "kernel/abstract.h" #ifndef LEAN_DEFAULT_LEVEL_SEPARATION #define LEAN_DEFAULT_LEVEL_SEPARATION 512 #endif namespace lean { expr mk_bin_rop(expr const & op, expr const & unit, unsigned num_args, expr const * args) { if (num_args == 0) { return unit; } else { expr r = args[num_args - 1]; unsigned i = num_args - 1; while (i > 0) { --i; r = mk_app({op, args[i], r}); } return r; } } expr mk_bin_rop(expr const & op, expr const & unit, std::initializer_list const & l) { return mk_bin_rop(op, unit, l.size(), l.begin()); } expr mk_bin_lop(expr const & op, expr const & unit, unsigned num_args, expr const * args) { if (num_args == 0) { return unit; } else { expr r = args[0]; for (unsigned i = 1; i < num_args; i++) { r = mk_app({op, r, args[i]}); } return r; } } expr mk_bin_lop(expr const & op, expr const & unit, std::initializer_list const & l) { return mk_bin_lop(op, unit, l.size(), l.begin()); } // ======================================= // Bultin universe variables m and u static level m_lvl(name("M")); static level u_lvl(name("U")); expr const TypeM = Type(m_lvl); expr const TypeU = Type(u_lvl); // ======================================= // ======================================= // Boolean Type static char const * g_Bool_str = "Bool"; static name g_Bool_name(g_Bool_str); static format g_Bool_fmt(g_Bool_str); class bool_type_value : public value { public: virtual ~bool_type_value() {} virtual expr get_type() const { return Type(); } virtual name get_name() const { return g_Bool_name; } }; expr const Bool = mk_value(*(new bool_type_value())); expr mk_bool_type() { return Bool; } // ======================================= // ======================================= // Boolean values True and False static name g_true_name("true"); static name g_false_name("false"); static name g_true_u_name("\u22A4"); // ⊤ static name g_false_u_name("\u22A5"); // ⊥ /** \brief Semantic attachments for Boolean values. */ class bool_value_value : public value { bool m_val; public: bool_value_value(bool v):m_val(v) {} virtual ~bool_value_value() {} virtual expr get_type() const { return Bool; } virtual name get_name() const { return m_val ? g_true_name : g_false_name; } virtual name get_unicode_name() const { return m_val ? g_true_u_name : g_false_u_name; } virtual bool operator==(value const & other) const { bool_value_value const * _other = dynamic_cast(&other); return _other && _other->m_val == m_val; } bool get_val() const { return m_val; } }; expr const True = mk_value(*(new bool_value_value(true))); expr const False = mk_value(*(new bool_value_value(false))); expr mk_bool_value(bool v) { return v ? True : False; } bool is_bool_value(expr const & e) { return is_value(e) && dynamic_cast(&to_value(e)) != nullptr; } bool to_bool(expr const & e) { lean_assert(is_bool_value(e)); return static_cast(to_value(e)).get_val(); } bool is_true(expr const & e) { return is_bool_value(e) && to_bool(e); } bool is_false(expr const & e) { return is_bool_value(e) && !to_bool(e); } // ======================================= // ======================================= // If-then-else builtin operator static name g_if_name("if"); static format g_if_fmt(g_if_name); /** \brief Semantic attachment for if-then-else operator with type Pi (A : Type), Bool -> A -> A -> A */ class if_fn_value : public value { expr m_type; public: if_fn_value() { expr A = Const("A"); // Pi (A: Type), bool -> A -> A -> A m_type = Pi({A, TypeU}, Bool >> (A >> (A >> A))); } virtual ~if_fn_value() {} virtual expr get_type() const { return m_type; } virtual name get_name() const { return g_if_name; } virtual bool normalize(unsigned num_args, expr const * args, expr & r) const { if (num_args == 5 && is_bool_value(args[2])) { if (to_bool(args[2])) r = args[3]; // if A true a b --> a else r = args[4]; // if A false a b --> b return true; } else if (num_args == 5 && args[3] == args[4]) { r = args[3]; // if A c a a --> a return true; } else { return false; } } }; MK_BUILTIN(if_fn, if_fn_value); // ======================================= MK_CONSTANT(implies_fn, name("implies")); MK_CONSTANT(iff_fn, name("iff")); MK_CONSTANT(and_fn, name("and")); MK_CONSTANT(or_fn, name("or")); MK_CONSTANT(not_fn, name("not")); MK_CONSTANT(forall_fn, name("forall")); MK_CONSTANT(exists_fn, name("exists")); MK_CONSTANT(homo_eq_fn, name("heq")); // Axioms MK_CONSTANT(mp_fn, name("MP")); MK_CONSTANT(discharge_fn, name("Discharge")); MK_CONSTANT(refl_fn, name("Refl")); MK_CONSTANT(case_fn, name("Case")); MK_CONSTANT(subst_fn, name("Subst")); MK_CONSTANT(eta_fn, name("Eta")); MK_CONSTANT(imp_antisym_fn, name("ImpAntisym")); void import_basic(environment & env) { env.add_uvar(uvar_name(m_lvl), level() + LEAN_DEFAULT_LEVEL_SEPARATION); env.add_uvar(uvar_name(u_lvl), m_lvl + LEAN_DEFAULT_LEVEL_SEPARATION); expr p1 = Bool >> Bool; expr p2 = Bool >> p1; expr f = Const("f"); expr a = Const("a"); expr b = Const("b"); expr x = Const("x"); expr y = Const("y"); expr A = Const("A"); expr A_pred = A >> Bool; expr B = Const("B"); expr q_type = Pi({A, TypeU}, A_pred >> Bool); expr piABx = Pi({x, A}, B(x)); expr A_arrow_u = A >> TypeU; expr P = Const("P"); expr H = Const("H"); expr H1 = Const("H1"); expr H2 = Const("H2"); env.add_builtin(mk_bool_type()); env.add_builtin(mk_bool_value(true)); env.add_builtin(mk_bool_value(false)); env.add_builtin(mk_if_fn()); // implies(x, y) := if x y True env.add_definition(implies_fn_name, p2, Fun({{x, Bool}, {y, Bool}}, bIf(x, y, True))); // iff(x, y) := x = y env.add_definition(iff_fn_name, p2, Fun({{x, Bool}, {y, Bool}}, Eq(x, y))); // not(x) := if x False True env.add_definition(not_fn_name, p1, Fun({x, Bool}, bIf(x, False, True))); // or(x, y) := Not(x) => y env.add_definition(or_fn_name, p2, Fun({{x, Bool}, {y, Bool}}, Implies(Not(x), y))); // and(x, y) := Not(x => Not(y)) env.add_definition(and_fn_name, p2, Fun({{x, Bool}, {y, Bool}}, Not(Implies(x, Not(y))))); // forall : Pi (A : Type u), (A -> Bool) -> Bool env.add_definition(forall_fn_name, q_type, Fun({{A, TypeU}, {P, A_pred}}, Eq(P, Fun({x, A}, True)))); // TODO(Leo): introduce epsilon env.add_definition(exists_fn_name, q_type, Fun({{A, TypeU}, {P, A_pred}}, Not(Forall(A, Fun({x, A}, Not(P(x))))))); // homogeneous equality env.add_definition(homo_eq_fn_name, Pi({{A, TypeU}, {x, A}, {y, A}}, Bool), Fun({{A, TypeU}, {x, A}, {y, A}}, Eq(x, y))); // MP : Pi (a b : Bool) (H1 : a => b) (H2 : a), b env.add_axiom(mp_fn_name, Pi({{a, Bool}, {b, Bool}, {H1, Implies(a, b)}, {H2, a}}, b)); // Discharge : Pi (a b : Bool) (H : a -> b), a => b env.add_axiom(discharge_fn_name, Pi({{a, Bool}, {b, Bool}, {H, a >> b}}, Implies(a, b))); // Refl : Pi (A : Type u) (a : A), a = a env.add_axiom(refl_fn_name, Pi({{A, TypeU}, {a, A}}, Eq(a, a))); // Case : Pi (P : Bool -> Bool) (H1 : P True) (H2 : P False) (a : Bool), P a env.add_axiom(case_fn_name, Pi({{P, Bool >> Bool}, {H1, P(True)}, {H2, P(False)}, {a, Bool}}, P(a))); // Subst : Pi (A : Type u) (a b : A) (P : A -> bool) (H1 : P a) (H2 : a = b), P b env.add_axiom(subst_fn_name, Pi({{A, TypeU}, {a, A}, {b, A}, {P, A_pred}, {H1, P(a)}, {H2, Eq(a, b)}}, P(b))); // Eta : Pi (A : Type u) (B : A -> Type u), f : (Pi x : A, B x), (Fun x : A => f x) = f env.add_axiom(eta_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}}, Eq(Fun({x, A}, f(x)), f))); // ImpliesAntisym : Pi (a b : Bool) (H1 : a => b) (H2 : b => a), a = b env.add_axiom(imp_antisym_fn_name, Pi({{a, Bool}, {b, Bool}, {H1, Implies(a, b)}, {H2, Implies(b, a)}}, Eq(a, b))); } }