/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.precategory.yoneda Author: Floris van Doorn -/ --note: modify definition in category.set import algebra.category.constructions .morphism open category eq category.ops functor prod.ops is_trunc set_option pp.beta true namespace yoneda set_option class.conservative false --TODO: why does this take so much steps? (giving more information than "assoc" hardly helps) definition representable_functor_assoc [C : Precategory] {a1 a2 a3 a4 a5 a6 : C} (f1 : hom a5 a6) (f2 : hom a4 a5) (f3 : hom a3 a4) (f4 : hom a2 a3) (f5 : hom a1 a2) : (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 := calc _ = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : assoc ... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : assoc ... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : assoc ... = _ : assoc --disturbing behaviour: giving the type of f "(x ⟶ y)" explicitly makes the unifier loop definition representable_functor (C : Precategory) : Cᵒᵖ ×c C ⇒ set := functor.mk (λ(x : Cᵒᵖ ×c C), homset x.1 x.2) (λ(x y : Cᵒᵖ ×c C) (f : _) (h : homset x.1 x.2), f.2 ∘⁅ C ⁆ (h ∘⁅ C ⁆ f.1)) proof (λ(x : Cᵒᵖ ×c C), eq_of_homotopy (λ(h : homset x.1 x.2), !id_left ⬝ !id_right)) qed -- (λ(x y z : Cᵒᵖ ×c C) (g : y ⟶ z) (f : x ⟶ y), eq_of_homotopy (λ(h : hom x.1 x.2), representable_functor_assoc g.2 f.2 h f.1 g.1)) begin intros (x, y, z, g, f), apply eq_of_homotopy, intro h, exact (representable_functor_assoc g.2 f.2 h f.1 g.1), end end yoneda open is_equiv equiv namespace functor open prod nat_trans variables {C D E : Precategory} definition functor_curry_ob (F : C ×c D ⇒ E) (c : C) : E ^c D := functor.mk (λd, F (c,d)) (λd d' g, F (id, g)) (λd, !respect_id) (λd₁ d₂ d₃ g' g, proof calc F (id, g' ∘ g) = F (id ∘ id, g' ∘ g) : {(id_compose c)⁻¹} ... = F ((id,g') ∘ (id, g)) : idp ... = F (id,g') ∘ F (id, g) : respect_comp F qed) local abbreviation Fob := @functor_curry_ob definition functor_curry_mor (F : C ×c D ⇒ E) ⦃c c' : C⦄ (f : c ⟶ c') : Fob F c ⟹ Fob F c' := nat_trans.mk (λd, F (f, id)) (λd d' g, proof calc F (id, g) ∘ F (f, id) = F (id ∘ f, g ∘ id) : respect_comp F ... = F (f, g ∘ id) : {id_left f} ... = F (f, g) : {id_right g} ... = F (f ∘ id, g) : {(id_right f)⁻¹} ... = F (f ∘ id, id ∘ g) : {(id_left g)⁻¹} ... = F (f, id) ∘ F (id, g) : (respect_comp F (f, id) (id, g))⁻¹ᵖ qed) local abbreviation Fmor := @functor_curry_mor definition functor_curry_mor_def (F : C ×c D ⇒ E) ⦃c c' : C⦄ (f : c ⟶ c') (d : D) : (Fmor F f) d = F (f, id) := idp definition functor_curry_id (F : C ×c D ⇒ E) (c : C) : Fmor F (ID c) = nat_trans.id := nat_trans_eq_mk (λd, respect_id F _) definition functor_curry_comp (F : C ×c D ⇒ E) ⦃c c' c'' : C⦄ (f' : c' ⟶ c'') (f : c ⟶ c') : Fmor F (f' ∘ f) = Fmor F f' ∘n Fmor F f := nat_trans_eq_mk (λd, calc natural_map (Fmor F (f' ∘ f)) d = F (f' ∘ f, id) : functor_curry_mor_def ... = F (f' ∘ f, id ∘ id) : {(id_compose d)⁻¹} ... = F ((f',id) ∘ (f, id)) : idp ... = F (f',id) ∘ F (f, id) : respect_comp F ... = natural_map ((Fmor F f') ∘ (Fmor F f)) d : idp) --respect_comp F (g, id) (f, id) definition functor_curry (F : C ×c D ⇒ E) : C ⇒ E ^c D := functor.mk (functor_curry_ob F) (functor_curry_mor F) (functor_curry_id F) (functor_curry_comp F) definition is_equiv_functor_curry : is_equiv (@functor_curry C D E) := sorry definition equiv_functor_curry : (C ×c D ⇒ E) ≃ (C ⇒ E ^c D) := equiv.mk _ !is_equiv_functor_curry end functor -- Coq uses unit/counit definitions as basic -- open yoneda precategory.product precategory.opposite functor morphism -- --universe levels are given explicitly because Lean uses 6 variables otherwise -- structure adjoint.{u v} [C D : Precategory.{u v}] (F : C ⇒ D) (G : D ⇒ C) : Type.{max u v} := -- (nat_iso : (representable_functor D) ∘f (prod_functor (opposite_functor F) (functor.ID D)) ⟹ -- (representable_functor C) ∘f (prod_functor (functor.ID (Cᵒᵖ)) G)) -- (is_iso_nat_iso : is_iso nat_iso) -- infix `⊣`:55 := adjoint -- namespace adjoint -- universe variables l1 l2 -- variables [C D : Precategory.{l1 l2}] (F : C ⇒ D) (G : D ⇒ C) -- end adjoint