/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura Hereditarily finite sets: finite sets whose elements are all hereditarily finite sets. Remark: all definitions compute, however the performace is quite poor since we implement this module using a bijection from (finset nat) to nat, and this bijection is implemeted using the Ackermann coding. -/ import data.nat data.finset.equiv data.list open nat binary open -[notations]finset definition hf := nat namespace hf local attribute hf [reducible] protected definition prio : num := num.succ std.priority.default protected definition is_inhabited [instance] : inhabited hf := nat.is_inhabited protected definition has_decidable_eq [instance] : decidable_eq hf := nat.has_decidable_eq definition of_finset (s : finset hf) : hf := @equiv.to_fun _ _ finset_nat_equiv_nat s definition to_finset (h : hf) : finset hf := @equiv.inv _ _ finset_nat_equiv_nat h definition to_nat (h : hf) : nat := h definition of_nat (n : nat) : hf := n lemma to_finset_of_finset (s : finset hf) : to_finset (of_finset s) = s := @equiv.left_inv _ _ finset_nat_equiv_nat s lemma of_finset_to_finset (s : hf) : of_finset (to_finset s) = s := @equiv.right_inv _ _ finset_nat_equiv_nat s lemma to_finset_inj {s₁ s₂ : hf} : to_finset s₁ = to_finset s₂ → s₁ = s₂ := λ h, function.injective_of_left_inverse of_finset_to_finset h lemma of_finset_inj {s₁ s₂ : finset hf} : of_finset s₁ = of_finset s₂ → s₁ = s₂ := λ h, function.injective_of_left_inverse to_finset_of_finset h /- empty -/ definition empty : hf := of_finset (finset.empty) notation `∅` := hf.empty /- insert -/ definition insert (a s : hf) : hf := of_finset (finset.insert a (to_finset s)) /- mem -/ definition mem (a : hf) (s : hf) : Prop := finset.mem a (to_finset s) infix ∈ := mem notation [priority finset.prio] a ∉ b := ¬ mem a b lemma insert_lt_of_not_mem {a s : hf} : a ∉ s → s < insert a s := begin unfold [insert, of_finset, equiv.to_fun, finset_nat_equiv_nat, mem, to_finset, equiv.inv], intro h, krewrite [finset.to_nat_insert h, to_nat_of_nat, -zero_add s at {1}], apply add_lt_add_right, apply pow_pos_of_pos _ dec_trivial end lemma insert_lt_insert_of_not_mem_of_not_mem_of_lt {a s₁ s₂ : hf} : a ∉ s₁ → a ∉ s₂ → s₁ < s₂ → insert a s₁ < insert a s₂ := begin unfold [insert, of_finset, equiv.to_fun, finset_nat_equiv_nat, mem, to_finset, equiv.inv], intro h₁ h₂ h₃, krewrite [finset.to_nat_insert h₁, finset.to_nat_insert h₂, *to_nat_of_nat], apply add_lt_add_left h₃ end open decidable protected definition decidable_mem [instance] : ∀ a s, decidable (a ∈ s) := λ a s, finset.decidable_mem a (to_finset s) lemma insert_le (a s : hf) : s ≤ insert a s := by_cases (suppose a ∈ s, by rewrite [↑insert, insert_eq_of_mem this, of_finset_to_finset]) (suppose a ∉ s, le_of_lt (insert_lt_of_not_mem this)) lemma not_mem_empty (a : hf) : a ∉ ∅ := begin unfold [mem, empty], rewrite to_finset_of_finset, apply finset.not_mem_empty end lemma mem_insert (a s : hf) : a ∈ insert a s := begin unfold [mem, insert], rewrite to_finset_of_finset, apply finset.mem_insert end lemma mem_insert_of_mem {a s : hf} (b : hf) : a ∈ s → a ∈ insert b s := begin unfold [mem, insert], intros, rewrite to_finset_of_finset, apply finset.mem_insert_of_mem, assumption end lemma eq_or_mem_of_mem_insert {a b s : hf} : a ∈ insert b s → a = b ∨ a ∈ s := begin unfold [mem, insert], rewrite to_finset_of_finset, intros, apply eq_or_mem_of_mem_insert, assumption end theorem mem_of_mem_insert_of_ne {x a : hf} {s : hf} : x ∈ insert a s → x ≠ a → x ∈ s := begin unfold [mem, insert], rewrite to_finset_of_finset, intros, apply mem_of_mem_insert_of_ne, repeat assumption end protected theorem ext {s₁ s₂ : hf} : (∀ a, a ∈ s₁ ↔ a ∈ s₂) → s₁ = s₂ := assume h, assert to_finset s₁ = to_finset s₂, from finset.ext h, assert of_finset (to_finset s₁) = of_finset (to_finset s₂), by rewrite this, by rewrite [*of_finset_to_finset at this]; exact this theorem insert_eq_of_mem {a : hf} {s : hf} : a ∈ s → insert a s = s := begin unfold mem, intro h, unfold [mem, insert], rewrite (finset.insert_eq_of_mem h), rewrite of_finset_to_finset end protected theorem induction [recursor 4] {P : hf → Prop} (h₁ : P empty) (h₂ : ∀ (a s : hf), a ∉ s → P s → P (insert a s)) (s : hf) : P s := assert P (of_finset (to_finset s)), from @finset.induction _ _ _ h₁ (λ a s nain ih, begin unfold [mem, insert] at h₂, rewrite -(to_finset_of_finset s) at nain, have P (insert a (of_finset s)), by exact h₂ a (of_finset s) nain ih, rewrite [↑insert at this, to_finset_of_finset at this], exact this end) (to_finset s), by rewrite of_finset_to_finset at this; exact this lemma insert_le_insert_of_le {a s₁ s₂ : hf} : a ∈ s₁ ∨ a ∉ s₂ → s₁ ≤ s₂ → insert a s₁ ≤ insert a s₂ := suppose a ∈ s₁ ∨ a ∉ s₂, suppose s₁ ≤ s₂, by_cases (suppose s₁ = s₂, by rewrite this) (suppose s₁ ≠ s₂, have s₁ < s₂, from lt_of_le_of_ne `s₁ ≤ s₂` `s₁ ≠ s₂`, by_cases (suppose a ∈ s₁, by_cases (suppose a ∈ s₂, by rewrite [insert_eq_of_mem `a ∈ s₁`, insert_eq_of_mem `a ∈ s₂`]; assumption) (suppose a ∉ s₂, by rewrite [insert_eq_of_mem `a ∈ s₁`]; exact le.trans `s₁ ≤ s₂` !insert_le)) (suppose a ∉ s₁, by_cases (suppose a ∈ s₂, or.elim `a ∈ s₁ ∨ a ∉ s₂` (by contradiction) (by contradiction)) (suppose a ∉ s₂, le_of_lt (insert_lt_insert_of_not_mem_of_not_mem_of_lt `a ∉ s₁` `a ∉ s₂` `s₁ < s₂`)))) /- union -/ definition union (s₁ s₂ : hf) : hf := of_finset (finset.union (to_finset s₁) (to_finset s₂)) infix [priority hf.prio] ∪ := union theorem mem_union_left {a : hf} {s₁ : hf} (s₂ : hf) : a ∈ s₁ → a ∈ s₁ ∪ s₂ := begin unfold mem, intro h, unfold union, rewrite to_finset_of_finset, apply finset.mem_union_left _ h end theorem mem_union_l {a : hf} {s₁ : hf} {s₂ : hf} : a ∈ s₁ → a ∈ s₁ ∪ s₂ := mem_union_left s₂ theorem mem_union_right {a : hf} {s₂ : hf} (s₁ : hf) : a ∈ s₂ → a ∈ s₁ ∪ s₂ := begin unfold mem, intro h, unfold union, rewrite to_finset_of_finset, apply finset.mem_union_right _ h end theorem mem_union_r {a : hf} {s₂ : hf} {s₁ : hf} : a ∈ s₂ → a ∈ s₁ ∪ s₂ := mem_union_right s₁ theorem mem_or_mem_of_mem_union {a : hf} {s₁ s₂ : hf} : a ∈ s₁ ∪ s₂ → a ∈ s₁ ∨ a ∈ s₂ := begin unfold [mem, union], rewrite to_finset_of_finset, intro h, apply finset.mem_or_mem_of_mem_union h end theorem mem_union_iff {a : hf} (s₁ s₂ : hf) : a ∈ s₁ ∪ s₂ ↔ a ∈ s₁ ∨ a ∈ s₂ := iff.intro (λ h, mem_or_mem_of_mem_union h) (λ d, or.elim d (λ i, mem_union_left _ i) (λ i, mem_union_right _ i)) theorem mem_union_eq {a : hf} (s₁ s₂ : hf) : (a ∈ s₁ ∪ s₂) = (a ∈ s₁ ∨ a ∈ s₂) := propext !mem_union_iff theorem union.comm (s₁ s₂ : hf) : s₁ ∪ s₂ = s₂ ∪ s₁ := hf.ext (λ a, by rewrite [*mem_union_eq]; exact or.comm) theorem union.assoc (s₁ s₂ s₃ : hf) : (s₁ ∪ s₂) ∪ s₃ = s₁ ∪ (s₂ ∪ s₃) := hf.ext (λ a, by rewrite [*mem_union_eq]; exact or.assoc) theorem union.left_comm (s₁ s₂ s₃ : hf) : s₁ ∪ (s₂ ∪ s₃) = s₂ ∪ (s₁ ∪ s₃) := !left_comm union.comm union.assoc s₁ s₂ s₃ theorem union.right_comm (s₁ s₂ s₃ : hf) : (s₁ ∪ s₂) ∪ s₃ = (s₁ ∪ s₃) ∪ s₂ := !right_comm union.comm union.assoc s₁ s₂ s₃ theorem union_self (s : hf) : s ∪ s = s := hf.ext (λ a, iff.intro (λ ain, or.elim (mem_or_mem_of_mem_union ain) (λ i, i) (λ i, i)) (λ i, mem_union_left _ i)) theorem union_empty (s : hf) : s ∪ ∅ = s := hf.ext (λ a, iff.intro (suppose a ∈ s ∪ ∅, or.elim (mem_or_mem_of_mem_union this) (λ i, i) (λ i, absurd i !not_mem_empty)) (suppose a ∈ s, mem_union_left _ this)) theorem empty_union (s : hf) : ∅ ∪ s = s := calc ∅ ∪ s = s ∪ ∅ : union.comm ... = s : union_empty /- inter -/ definition inter (s₁ s₂ : hf) : hf := of_finset (finset.inter (to_finset s₁) (to_finset s₂)) infix [priority hf.prio] ∩ := inter theorem mem_of_mem_inter_left {a : hf} {s₁ s₂ : hf} : a ∈ s₁ ∩ s₂ → a ∈ s₁ := begin unfold mem, unfold inter, rewrite to_finset_of_finset, intro h, apply finset.mem_of_mem_inter_left h end theorem mem_of_mem_inter_right {a : hf} {s₁ s₂ : hf} : a ∈ s₁ ∩ s₂ → a ∈ s₂ := begin unfold mem, unfold inter, rewrite to_finset_of_finset, intro h, apply finset.mem_of_mem_inter_right h end theorem mem_inter {a : hf} {s₁ s₂ : hf} : a ∈ s₁ → a ∈ s₂ → a ∈ s₁ ∩ s₂ := begin unfold mem, intro h₁ h₂, unfold inter, rewrite to_finset_of_finset, apply finset.mem_inter h₁ h₂ end theorem mem_inter_iff (a : hf) (s₁ s₂ : hf) : a ∈ s₁ ∩ s₂ ↔ a ∈ s₁ ∧ a ∈ s₂ := iff.intro (λ h, and.intro (mem_of_mem_inter_left h) (mem_of_mem_inter_right h)) (λ h, mem_inter (and.elim_left h) (and.elim_right h)) theorem mem_inter_eq (a : hf) (s₁ s₂ : hf) : (a ∈ s₁ ∩ s₂) = (a ∈ s₁ ∧ a ∈ s₂) := propext !mem_inter_iff theorem inter.comm (s₁ s₂ : hf) : s₁ ∩ s₂ = s₂ ∩ s₁ := hf.ext (λ a, by rewrite [*mem_inter_eq]; exact and.comm) theorem inter.assoc (s₁ s₂ s₃ : hf) : (s₁ ∩ s₂) ∩ s₃ = s₁ ∩ (s₂ ∩ s₃) := hf.ext (λ a, by rewrite [*mem_inter_eq]; exact and.assoc) theorem inter.left_comm (s₁ s₂ s₃ : hf) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) := !left_comm inter.comm inter.assoc s₁ s₂ s₃ theorem inter.right_comm (s₁ s₂ s₃ : hf) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ := !right_comm inter.comm inter.assoc s₁ s₂ s₃ theorem inter_self (s : hf) : s ∩ s = s := hf.ext (λ a, iff.intro (λ h, mem_of_mem_inter_right h) (λ h, mem_inter h h)) theorem inter_empty (s : hf) : s ∩ ∅ = ∅ := hf.ext (λ a, iff.intro (suppose a ∈ s ∩ ∅, absurd (mem_of_mem_inter_right this) !not_mem_empty) (suppose a ∈ ∅, absurd this !not_mem_empty)) theorem empty_inter (s : hf) : ∅ ∩ s = ∅ := calc ∅ ∩ s = s ∩ ∅ : inter.comm ... = ∅ : inter_empty /- card -/ definition card (s : hf) : nat := finset.card (to_finset s) theorem card_empty : card ∅ = 0 := rfl lemma ne_empty_of_card_eq_succ {s : hf} {n : nat} : card s = succ n → s ≠ ∅ := by intros; substvars; contradiction /- erase -/ definition erase (a : hf) (s : hf) : hf := of_finset (erase a (to_finset s)) theorem mem_erase (a : hf) (s : hf) : a ∉ erase a s := begin unfold [mem, erase], rewrite to_finset_of_finset, apply finset.mem_erase end theorem card_erase_of_mem {a : hf} {s : hf} : a ∈ s → card (erase a s) = pred (card s) := begin unfold mem, intro h, unfold [erase, card], rewrite to_finset_of_finset, apply finset.card_erase_of_mem h end theorem card_erase_of_not_mem {a : hf} {s : hf} : a ∉ s → card (erase a s) = card s := begin unfold [mem], intro h, unfold [erase, card], rewrite to_finset_of_finset, apply finset.card_erase_of_not_mem h end theorem erase_empty (a : hf) : erase a ∅ = ∅ := rfl theorem ne_of_mem_erase {a b : hf} {s : hf} : b ∈ erase a s → b ≠ a := by intro h beqa; subst b; exact absurd h !mem_erase theorem mem_of_mem_erase {a b : hf} {s : hf} : b ∈ erase a s → b ∈ s := begin unfold [erase, mem], rewrite to_finset_of_finset, intro h, apply mem_of_mem_erase h end theorem mem_erase_of_ne_of_mem {a b : hf} {s : hf} : a ≠ b → a ∈ s → a ∈ erase b s := begin intro h₁, unfold mem, intro h₂, unfold erase, rewrite to_finset_of_finset, apply mem_erase_of_ne_of_mem h₁ h₂ end theorem mem_erase_iff (a b : hf) (s : hf) : a ∈ erase b s ↔ a ∈ s ∧ a ≠ b := iff.intro (assume H, and.intro (mem_of_mem_erase H) (ne_of_mem_erase H)) (assume H, mem_erase_of_ne_of_mem (and.right H) (and.left H)) theorem mem_erase_eq (a b : hf) (s : hf) : a ∈ erase b s = (a ∈ s ∧ a ≠ b) := propext !mem_erase_iff theorem erase_insert {a : hf} {s : hf} : a ∉ s → erase a (insert a s) = s := begin unfold [mem, erase, insert], intro h, rewrite [to_finset_of_finset, finset.erase_insert h, of_finset_to_finset] end theorem insert_erase {a : hf} {s : hf} : a ∈ s → insert a (erase a s) = s := begin unfold mem, intro h, unfold [insert, erase], rewrite [to_finset_of_finset, finset.insert_erase h, of_finset_to_finset] end /- subset -/ definition subset (s₁ s₂ : hf) : Prop := finset.subset (to_finset s₁) (to_finset s₂) infix [priority hf.prio] ⊆ := subset theorem empty_subset (s : hf) : ∅ ⊆ s := begin unfold [empty, subset], rewrite to_finset_of_finset, apply finset.empty_subset (to_finset s) end theorem subset.refl (s : hf) : s ⊆ s := begin unfold [subset], apply finset.subset.refl (to_finset s) end theorem subset.trans {s₁ s₂ s₃ : hf} : s₁ ⊆ s₂ → s₂ ⊆ s₃ → s₁ ⊆ s₃ := begin unfold [subset], intro h₁ h₂, apply finset.subset.trans h₁ h₂ end theorem mem_of_subset_of_mem {s₁ s₂ : hf} {a : hf} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ := begin unfold [subset, mem], intro h₁ h₂, apply finset.mem_of_subset_of_mem h₁ h₂ end theorem subset.antisymm {s₁ s₂ : hf} : s₁ ⊆ s₂ → s₂ ⊆ s₁ → s₁ = s₂ := begin unfold [subset], intro h₁ h₂, apply to_finset_inj (finset.subset.antisymm h₁ h₂) end -- alternative name theorem eq_of_subset_of_subset {s₁ s₂ : hf} (H₁ : s₁ ⊆ s₂) (H₂ : s₂ ⊆ s₁) : s₁ = s₂ := subset.antisymm H₁ H₂ theorem subset_of_forall {s₁ s₂ : hf} : (∀x, x ∈ s₁ → x ∈ s₂) → s₁ ⊆ s₂ := begin unfold [mem, subset], intro h, apply finset.subset_of_forall h end theorem subset_insert (s : hf) (a : hf) : s ⊆ insert a s := begin unfold [subset, insert], rewrite to_finset_of_finset, apply finset.subset_insert (to_finset s) end theorem eq_empty_of_subset_empty {x : hf} (H : x ⊆ ∅) : x = ∅ := subset.antisymm H (empty_subset x) theorem subset_empty_iff (x : hf) : x ⊆ ∅ ↔ x = ∅ := iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅) theorem erase_subset_erase (a : hf) {s t : hf} : s ⊆ t → erase a s ⊆ erase a t := begin unfold [subset, erase], intro h, rewrite *to_finset_of_finset, apply finset.erase_subset_erase a h end theorem erase_subset (a : hf) (s : hf) : erase a s ⊆ s := begin unfold [subset, erase], rewrite to_finset_of_finset, apply finset.erase_subset a (to_finset s) end theorem erase_eq_of_not_mem {a : hf} {s : hf} : a ∉ s → erase a s = s := begin unfold [mem, erase], intro h, rewrite [finset.erase_eq_of_not_mem h, of_finset_to_finset] end theorem erase_insert_subset (a : hf) (s : hf) : erase a (insert a s) ⊆ s := begin unfold [erase, insert, subset], rewrite [*to_finset_of_finset], apply finset.erase_insert_subset a (to_finset s) end theorem erase_subset_of_subset_insert {a : hf} {s t : hf} (H : s ⊆ insert a t) : erase a s ⊆ t := hf.subset.trans (!hf.erase_subset_erase H) (erase_insert_subset a t) theorem insert_erase_subset (a : hf) (s : hf) : s ⊆ insert a (erase a s) := decidable.by_cases (assume ains : a ∈ s, by rewrite [!insert_erase ains]; apply subset.refl) (assume nains : a ∉ s, suffices s ⊆ insert a s, by rewrite [erase_eq_of_not_mem nains]; assumption, subset_insert s a) theorem insert_subset_insert (a : hf) {s t : hf} : s ⊆ t → insert a s ⊆ insert a t := begin unfold [subset, insert], intro h, rewrite *to_finset_of_finset, apply finset.insert_subset_insert a h end theorem subset_insert_of_erase_subset {s t : hf} {a : hf} (H : erase a s ⊆ t) : s ⊆ insert a t := subset.trans (insert_erase_subset a s) (!insert_subset_insert H) theorem subset_insert_iff (s t : hf) (a : hf) : s ⊆ insert a t ↔ erase a s ⊆ t := iff.intro !erase_subset_of_subset_insert !subset_insert_of_erase_subset theorem le_of_subset {s₁ s₂ : hf} : s₁ ⊆ s₂ → s₁ ≤ s₂ := begin revert s₂, induction s₁ with a s₁ nain ih, take s₂, suppose ∅ ⊆ s₂, !zero_le, take s₂, suppose insert a s₁ ⊆ s₂, assert a ∈ s₂, from mem_of_subset_of_mem this !mem_insert, have a ∉ erase a s₂, from !mem_erase, have s₁ ⊆ erase a s₂, from subset_of_forall (take x xin, by_cases (suppose x = a, by subst x; contradiction) (suppose x ≠ a, have x ∈ s₂, from mem_of_subset_of_mem `insert a s₁ ⊆ s₂` (mem_insert_of_mem _ `x ∈ s₁`), mem_erase_of_ne_of_mem `x ≠ a` `x ∈ s₂`)), have s₁ ≤ erase a s₂, from ih _ this, assert insert a s₁ ≤ insert a (erase a s₂), from insert_le_insert_of_le (or.inr `a ∉ erase a s₂`) this, by rewrite [insert_erase `a ∈ s₂` at this]; exact this end /- image -/ definition image (f : hf → hf) (s : hf) : hf := of_finset (finset.image f (to_finset s)) theorem image_empty (f : hf → hf) : image f ∅ = ∅ := rfl theorem mem_image_of_mem (f : hf → hf) {s : hf} {a : hf} : a ∈ s → f a ∈ image f s := begin unfold [mem, image], intro h, rewrite to_finset_of_finset, apply finset.mem_image_of_mem f h end theorem mem_image {f : hf → hf} {s : hf} {a : hf} {b : hf} (H1 : a ∈ s) (H2 : f a = b) : b ∈ image f s := eq.subst H2 (mem_image_of_mem f H1) theorem exists_of_mem_image {f : hf → hf} {s : hf} {b : hf} : b ∈ image f s → ∃a, a ∈ s ∧ f a = b := begin unfold [mem, image], rewrite to_finset_of_finset, intro h, apply finset.exists_of_mem_image h end theorem mem_image_iff (f : hf → hf) {s : hf} {y : hf} : y ∈ image f s ↔ ∃x, x ∈ s ∧ f x = y := begin unfold [mem, image], rewrite to_finset_of_finset, apply finset.mem_image_iff end theorem mem_image_eq (f : hf → hf) {s : hf} {y : hf} : y ∈ image f s = ∃x, x ∈ s ∧ f x = y := propext (mem_image_iff f) theorem mem_image_of_mem_image_of_subset {f : hf → hf} {s t : hf} {y : hf} (H1 : y ∈ image f s) (H2 : s ⊆ t) : y ∈ image f t := obtain x `x ∈ s` `f x = y`, from exists_of_mem_image H1, have x ∈ t, from mem_of_subset_of_mem H2 `x ∈ s`, show y ∈ image f t, from mem_image `x ∈ t` `f x = y` theorem image_insert (f : hf → hf) (s : hf) (a : hf) : image f (insert a s) = insert (f a) (image f s) := begin unfold [image, insert], rewrite [*to_finset_of_finset, finset.image_insert] end open function lemma image_compose {f : hf → hf} {g : hf → hf} {s : hf} : image (f∘g) s = image f (image g s) := begin unfold image, rewrite [*to_finset_of_finset, finset.image_compose] end lemma image_subset {a b : hf} (f : hf → hf) : a ⊆ b → image f a ⊆ image f b := begin unfold [subset, image], intro h, rewrite *to_finset_of_finset, apply finset.image_subset f h end theorem image_union (f : hf → hf) (s t : hf) : image f (s ∪ t) = image f s ∪ image f t := begin unfold [image, union], rewrite [*to_finset_of_finset, finset.image_union] end /- powerset -/ definition powerset (s : hf) : hf := of_finset (finset.image of_finset (finset.powerset (to_finset s))) prefix [priority hf.prio] `𝒫`:100 := powerset theorem powerset_empty : 𝒫 ∅ = insert ∅ ∅ := rfl theorem powerset_insert {a : hf} {s : hf} : a ∉ s → 𝒫 (insert a s) = 𝒫 s ∪ image (insert a) (𝒫 s) := begin unfold [mem, powerset, insert, union, image], rewrite [*to_finset_of_finset], intro h, have (λ (x : finset hf), of_finset (finset.insert a x)) = (λ (x : finset hf), of_finset (finset.insert a (to_finset (of_finset x)))), from funext (λ x, by rewrite to_finset_of_finset), rewrite [finset.powerset_insert h, finset.image_union, -*finset.image_compose,↑compose,this] end theorem mem_powerset_iff_subset (s : hf) : ∀ x : hf, x ∈ 𝒫 s ↔ x ⊆ s := begin intro x, unfold [mem, powerset, subset], rewrite [to_finset_of_finset, finset.mem_image_eq], apply iff.intro, suppose (∃ (w : finset hf), finset.mem w (finset.powerset (to_finset s)) ∧ of_finset w = x), obtain w h₁ h₂, from this, begin subst x, rewrite to_finset_of_finset, exact iff.mp !finset.mem_powerset_iff_subset h₁ end, suppose finset.subset (to_finset x) (to_finset s), assert finset.mem (to_finset x) (finset.powerset (to_finset s)), from iff.mpr !finset.mem_powerset_iff_subset this, exists.intro (to_finset x) (and.intro this (of_finset_to_finset x)) end theorem subset_of_mem_powerset {s t : hf} (H : s ∈ 𝒫 t) : s ⊆ t := iff.mp (mem_powerset_iff_subset t s) H theorem mem_powerset_of_subset {s t : hf} (H : s ⊆ t) : s ∈ 𝒫 t := iff.mpr (mem_powerset_iff_subset t s) H theorem empty_mem_powerset (s : hf) : ∅ ∈ 𝒫 s := mem_powerset_of_subset (empty_subset s) /- hf as lists -/ open - [notations] list definition of_list (s : list hf) : hf := @equiv.to_fun _ _ list_nat_equiv_nat s definition to_list (h : hf) : list hf := @equiv.inv _ _ list_nat_equiv_nat h lemma to_list_of_list (s : list hf) : to_list (of_list s) = s := @equiv.left_inv _ _ list_nat_equiv_nat s lemma of_list_to_list (s : hf) : of_list (to_list s) = s := @equiv.right_inv _ _ list_nat_equiv_nat s lemma to_list_inj {s₁ s₂ : hf} : to_list s₁ = to_list s₂ → s₁ = s₂ := λ h, function.injective_of_left_inverse of_list_to_list h lemma of_list_inj {s₁ s₂ : list hf} : of_list s₁ = of_list s₂ → s₁ = s₂ := λ h, function.injective_of_left_inverse to_list_of_list h definition nil : hf := of_list list.nil lemma empty_eq_nil : ∅ = nil := rfl definition cons (a l : hf) : hf := of_list (list.cons a (to_list l)) infixr :: := cons lemma cons_ne_nil (a l : hf) : a::l ≠ nil := by contradiction lemma head_eq_of_cons_eq {h₁ h₂ t₁ t₂ : hf} : (h₁::t₁) = (h₂::t₂) → h₁ = h₂ := begin unfold cons, intro h, apply list.head_eq_of_cons_eq (of_list_inj h) end lemma tail_eq_of_cons_eq {h₁ h₂ t₁ t₂ : hf} : (h₁::t₁) = (h₂::t₂) → t₁ = t₂ := begin unfold cons, intro h, apply to_list_inj (list.tail_eq_of_cons_eq (of_list_inj h)) end lemma cons_inj {a : hf} : injective (cons a) := take l₁ l₂, assume Pe, tail_eq_of_cons_eq Pe /- append -/ definition append (l₁ l₂ : hf) : hf := of_list (list.append (to_list l₁) (to_list l₂)) notation l₁ ++ l₂ := append l₁ l₂ theorem append_nil_left [simp] (t : hf) : nil ++ t = t := begin unfold [nil, append], rewrite [to_list_of_list, list.append_nil_left, of_list_to_list] end theorem append_cons [simp] (x s t : hf) : (x::s) ++ t = x::(s ++ t) := begin unfold [cons, append], rewrite [*to_list_of_list, list.append_cons] end theorem append_nil_right [simp] (t : hf) : t ++ nil = t := begin unfold [nil, append], rewrite [to_list_of_list, list.append_nil_right, of_list_to_list] end theorem append.assoc [simp] (s t u : hf) : s ++ t ++ u = s ++ (t ++ u) := begin unfold append, rewrite [*to_list_of_list, list.append.assoc] end /- length -/ definition length (l : hf) : nat := list.length (to_list l) theorem length_nil [simp] : length nil = 0 := begin unfold [length, nil] end theorem length_cons [simp] (x t : hf) : length (x::t) = length t + 1 := begin unfold [length, cons], rewrite to_list_of_list end theorem length_append [simp] (s t : hf) : length (s ++ t) = length s + length t := begin unfold [length, append], rewrite [to_list_of_list, list.length_append] end theorem eq_nil_of_length_eq_zero {l : hf} : length l = 0 → l = nil := begin unfold [length, nil], intro h, rewrite [-list.eq_nil_of_length_eq_zero h, of_list_to_list] end theorem ne_nil_of_length_eq_succ {l : hf} {n : nat} : length l = succ n → l ≠ nil := begin unfold [length, nil], intro h₁ h₂, subst l, rewrite to_list_of_list at h₁, contradiction end /- head and tail -/ definition head (l : hf) : hf := list.head (to_list l) theorem head_cons [simp] (a l : hf) : head (a::l) = a := begin unfold [head, cons], rewrite to_list_of_list end private lemma to_list_ne_list_nil {s : hf} : s ≠ nil → to_list s ≠ list.nil := begin unfold nil, intro h, suppose to_list s = list.nil, by rewrite [-this at h, of_list_to_list at h]; exact absurd rfl h end theorem head_append [simp] (t : hf) {s : hf} : s ≠ nil → head (s ++ t) = head s := begin unfold [nil, head, append], rewrite to_list_of_list, suppose s ≠ of_list list.nil, by rewrite [list.head_append _ (to_list_ne_list_nil this)] end definition tail (l : hf) : hf := of_list (list.tail (to_list l)) theorem tail_nil [simp] : tail nil = nil := begin unfold [tail, nil] end theorem tail_cons [simp] (a l : hf) : tail (a::l) = l := begin unfold [tail, cons], rewrite [to_list_of_list, list.tail_cons, of_list_to_list] end theorem cons_head_tail {l : hf} : l ≠ nil → (head l)::(tail l) = l := begin unfold [nil, head, tail, cons], suppose l ≠ of_list list.nil, by rewrite [to_list_of_list, list.cons_head_tail (to_list_ne_list_nil this), of_list_to_list] end end hf