/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: hit.pushout Authors: Floris van Doorn Declaration of the pushout -/ import .type_quotient open type_quotient eq sum equiv equiv.ops namespace pushout section parameters {TL BL TR : Type} (f : TL → BL) (g : TL → TR) local abbreviation A := BL + TR inductive pushout_rel : A → A → Type := | Rmk : Π(x : TL), pushout_rel (inl (f x)) (inr (g x)) open pushout_rel local abbreviation R := pushout_rel definition pushout : Type := type_quotient pushout_rel -- TODO: define this in root namespace definition inl (x : BL) : pushout := class_of R (inl x) definition inr (x : TR) : pushout := class_of R (inr x) definition glue (x : TL) : inl (f x) = inr (g x) := eq_of_rel pushout_rel (Rmk f g x) protected definition rec {P : pushout → Type} (Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x)) (y : pushout) : P y := begin fapply (type_quotient.rec_on y), { intro a, cases a, apply Pinl, apply Pinr}, { intros [a, a', H], cases H, apply Pglue} end protected definition rec_on [reducible] {P : pushout → Type} (y : pushout) (Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x)) : P y := rec Pinl Pinr Pglue y theorem rec_glue {P : pushout → Type} (Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x)) (x : TL) : apd (rec Pinl Pinr Pglue) (glue x) = Pglue x := !rec_eq_of_rel protected definition elim {P : Type} (Pinl : BL → P) (Pinr : TR → P) (Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (y : pushout) : P := rec Pinl Pinr (λx, !tr_constant ⬝ Pglue x) y protected definition elim_on [reducible] {P : Type} (y : pushout) (Pinl : BL → P) (Pinr : TR → P) (Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) : P := elim Pinl Pinr Pglue y theorem elim_glue {P : Type} (Pinl : BL → P) (Pinr : TR → P) (Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (x : TL) : ap (elim Pinl Pinr Pglue) (glue x) = Pglue x := begin apply (@cancel_left _ _ _ _ (tr_constant (glue x) (elim Pinl Pinr Pglue (inl (f x))))), rewrite [-apd_eq_tr_constant_con_ap,↑elim,rec_glue], end protected definition elim_type (Pinl : BL → Type) (Pinr : TR → Type) (Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (y : pushout) : Type := elim Pinl Pinr (λx, ua (Pglue x)) y protected definition elim_type_on [reducible] (y : pushout) (Pinl : BL → Type) (Pinr : TR → Type) (Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) : Type := elim_type Pinl Pinr Pglue y theorem elim_type_glue (Pinl : BL → Type) (Pinr : TR → Type) (Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (y : pushout) (x : TL) : transport (elim_type Pinl Pinr Pglue) (glue x) = Pglue x := by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_glue];apply cast_ua_fn end namespace test open pushout equiv is_equiv unit bool private definition unit_of_empty (u : empty) : unit := star example : pushout unit_of_empty unit_of_empty ≃ bool := begin fapply equiv.MK, { intro x, fapply (pushout.rec_on _ _ x), intro u, exact ff, intro u, exact tt, intro c, cases c}, { intro b, cases b, exact (inl _ _ ⋆), exact (inr _ _ ⋆)}, { intro b, cases b, esimp, esimp}, { intro x, fapply (pushout.rec_on _ _ x), intro u, cases u, esimp, intro u, cases u, esimp, intro c, cases c}, end end test end pushout