import logic data.nat.basic open nat inductive vector (A : Type) : nat → Type := vnil : vector A zero, vcons : Π {n : nat}, A → vector A n → vector A (succ n) namespace vector print definition no_confusion theorem vcons.inj₁ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → a₁ = a₂ := begin intro h, apply (no_confusion h), intros, assumption end theorem vcons.inj₂ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → v₁ = v₂ := begin intro h, apply heq.to_eq, apply (no_confusion h), intros, eassumption, end end vector