/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.int.order Authors: Floris van Doorn, Jeremy Avigad The order relation on the integers. We show that int is an instance of linear_comm_ordered_ring and transfer the results. -/ import .basic algebra.ordered_ring open nat open decidable open fake_simplifier open int eq.ops namespace int private definition nonneg (a : ℤ) : Prop := int.cases_on a (take n, true) (take n, false) definition le (a b : ℤ) : Prop := nonneg (sub b a) definition lt (a b : ℤ) : Prop := le (add a 1) b infix - := int.sub infix <= := int.le infix ≤ := int.le infix < := int.lt local attribute nonneg [reducible] private definition decidable_nonneg [instance] (a : ℤ) : decidable (nonneg a) := int.cases_on a _ _ definition decidable_le [instance] (a b : ℤ) : decidable (a ≤ b) := decidable_nonneg _ definition decidable_lt [instance] (a b : ℤ) : decidable (a < b) := decidable_nonneg _ private theorem nonneg.elim {a : ℤ} : nonneg a → ∃n : ℕ, a = n := int.cases_on a (take n H, exists.intro n rfl) (take n' H, false.elim H) private theorem nonneg_or_nonneg_neg (a : ℤ) : nonneg a ∨ nonneg (-a) := int.cases_on a (take n, or.inl trivial) (take n, or.inr trivial) theorem le.intro {a b : ℤ} {n : ℕ} (H : a + n = b) : a ≤ b := have H1 : b - a = n, from (eq_add_neg_of_add_eq (!add.comm ▸ H))⁻¹, have H2 : nonneg n, from true.intro, show nonneg (b - a), from H1⁻¹ ▸ H2 theorem le.elim {a b : ℤ} (H : a ≤ b) : ∃n : ℕ, a + n = b := obtain (n : ℕ) (H1 : b - a = n), from nonneg.elim H, exists.intro n (!add.comm ▸ iff.mp' !add_eq_iff_eq_add_neg (H1⁻¹)) theorem le.total (a b : ℤ) : a ≤ b ∨ b ≤ a := or.elim (nonneg_or_nonneg_neg (b - a)) (assume H, or.inl H) (assume H : nonneg (-(b - a)), have H0 : -(b - a) = a - b, from neg_sub b a, have H1 : nonneg (a - b), from H0 ▸ H, -- too bad: can't do it in one step or.inr H1) theorem of_nat_le_of_nat {m n : ℕ} (H : #nat m ≤ n) : of_nat m ≤ of_nat n := obtain (k : ℕ) (Hk : m + k = n), from nat.le.elim H, le.intro (Hk ▸ of_nat_add_of_nat m k) theorem le_of_of_nat_le_of_nat {m n : ℕ} (H : of_nat m ≤ of_nat n) : (#nat m ≤ n) := obtain (k : ℕ) (Hk : of_nat m + of_nat k = of_nat n), from le.elim H, have H1 : m + k = n, from of_nat.inj ((of_nat_add_of_nat m k)⁻¹ ⬝ Hk), nat.le.intro H1 theorem of_nat_le_of_nat_iff (m n : ℕ) : of_nat m ≤ of_nat n ↔ m ≤ n := iff.intro le_of_of_nat_le_of_nat of_nat_le_of_nat theorem lt_add_succ (a : ℤ) (n : ℕ) : a < a + succ n := le.intro (show a + 1 + n = a + succ n, from calc a + 1 + n = a + (1 + n) : add.assoc ... = a + (n + 1) : nat.add.comm ... = a + succ n : rfl) theorem lt.intro {a b : ℤ} {n : ℕ} (H : a + succ n = b) : a < b := H ▸ lt_add_succ a n theorem lt.elim {a b : ℤ} (H : a < b) : ∃n : ℕ, a + succ n = b := obtain (n : ℕ) (Hn : a + 1 + n = b), from le.elim H, have H2 : a + succ n = b, from calc a + succ n = a + 1 + n : by simp ... = b : Hn, exists.intro n H2 theorem of_nat_lt_of_nat_iff (n m : ℕ) : of_nat n < of_nat m ↔ n < m := calc of_nat n < of_nat m ↔ of_nat n + 1 ≤ of_nat m : iff.refl ... ↔ of_nat (succ n) ≤ of_nat m : of_nat_succ n ▸ !iff.refl ... ↔ succ n ≤ m : of_nat_le_of_nat_iff ... ↔ n < m : iff.symm (lt_iff_succ_le _ _) theorem lt_of_of_nat_lt_of_nat {m n : ℕ} (H : of_nat m < of_nat n) : #nat m < n := iff.mp !of_nat_lt_of_nat_iff H theorem of_nat_lt_of_nat {m n : ℕ} (H : #nat m < n) : of_nat m < of_nat n := iff.mp' !of_nat_lt_of_nat_iff H /- show that the integers form an ordered additive group -/ theorem le.refl (a : ℤ) : a ≤ a := le.intro (add_zero a) theorem le.trans {a b c : ℤ} (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c := obtain (n : ℕ) (Hn : a + n = b), from le.elim H1, obtain (m : ℕ) (Hm : b + m = c), from le.elim H2, have H3 : a + of_nat (n + m) = c, from calc a + of_nat (n + m) = a + (of_nat n + m) : {(of_nat_add_of_nat n m)⁻¹} ... = a + n + m : (add.assoc a n m)⁻¹ ... = b + m : {Hn} ... = c : Hm, le.intro H3 theorem le.antisymm : ∀ {a b : ℤ}, a ≤ b → b ≤ a → a = b := take a b : ℤ, assume (H₁ : a ≤ b) (H₂ : b ≤ a), obtain (n : ℕ) (Hn : a + n = b), from le.elim H₁, obtain (m : ℕ) (Hm : b + m = a), from le.elim H₂, have H₃ : a + of_nat (n + m) = a + 0, from calc a + of_nat (n + m) = a + (of_nat n + m) : of_nat_add_of_nat ... = a + n + m : add.assoc ... = b + m : Hn ... = a : Hm ... = a + 0 : add_zero, have H₄ : of_nat (n + m) = of_nat 0, from add.left_cancel H₃, have H₅ : n + m = 0, from of_nat.inj H₄, have H₆ : n = 0, from nat.eq_zero_of_add_eq_zero_right H₅, show a = b, from calc a = a + 0 : add_zero ... = a + n : H₆ ... = b : Hn theorem lt.irrefl (a : ℤ) : ¬ a < a := (assume H : a < a, obtain (n : ℕ) (Hn : a + succ n = a), from lt.elim H, have H2 : a + succ n = a + 0, from calc a + succ n = a : Hn ... = a + 0 : by simp, have H3 : succ n = 0, from add.left_cancel H2, have H4 : succ n = 0, from of_nat.inj H3, absurd H4 !succ_ne_zero) theorem ne_of_lt {a b : ℤ} (H : a < b) : a ≠ b := (assume H2 : a = b, absurd (H2 ▸ H) (lt.irrefl b)) theorem succ_le_of_lt {a b : ℤ} (H : a < b) : a + 1 ≤ b := H theorem lt_of_le_succ {a b : ℤ} (H : a + 1 ≤ b) : a < b := H theorem le_of_lt {a b : ℤ} (H : a < b) : a ≤ b := obtain (n : ℕ) (Hn : a + succ n = b), from lt.elim H, le.intro Hn theorem lt_iff_le_and_ne (a b : ℤ) : a < b ↔ (a ≤ b ∧ a ≠ b) := iff.intro (assume H, and.intro (le_of_lt H) (ne_of_lt H)) (assume H, have H1 : a ≤ b, from and.elim_left H, have H2 : a ≠ b, from and.elim_right H, obtain (n : ℕ) (Hn : a + n = b), from le.elim H1, have H3 : n ≠ 0, from (assume H' : n = 0, H2 (!add_zero ▸ H' ▸ Hn)), obtain (k : ℕ) (Hk : n = succ k), from nat.exists_eq_succ_of_ne_zero H3, lt.intro (Hk ▸ Hn)) theorem le_iff_lt_or_eq (a b : ℤ) : a ≤ b ↔ (a < b ∨ a = b) := iff.intro (assume H, by_cases (assume H1 : a = b, or.inr H1) (assume H1 : a ≠ b, obtain (n : ℕ) (Hn : a + n = b), from le.elim H, have H2 : n ≠ 0, from (assume H' : n = 0, H1 (!add_zero ▸ H' ▸ Hn)), obtain (k : ℕ) (Hk : n = succ k), from nat.exists_eq_succ_of_ne_zero H2, or.inl (lt.intro (Hk ▸ Hn)))) (assume H, or.elim H (assume H1, le_of_lt H1) (assume H1, H1 ▸ !le.refl)) theorem lt_succ (a : ℤ) : a < a + 1 := le.refl (a + 1) theorem add_le_add_left {a b : ℤ} (H : a ≤ b) (c : ℤ) : c + a ≤ c + b := obtain (n : ℕ) (Hn : a + n = b), from le.elim H, have H2 : c + a + n = c + b, from calc c + a + n = c + (a + n) : add.assoc c a n ... = c + b : {Hn}, le.intro H2 theorem mul_nonneg {a b : ℤ} (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a * b := obtain (n : ℕ) (Hn : 0 + n = a), from le.elim Ha, obtain (m : ℕ) (Hm : 0 + m = b), from le.elim Hb, le.intro (eq.symm (calc a * b = (0 + n) * b : Hn ... = n * b : nat.zero_add ... = n * (0 + m) : {Hm⁻¹} ... = n * m : nat.zero_add ... = 0 + n * m : zero_add)) theorem mul_pos {a b : ℤ} (Ha : 0 < a) (Hb : 0 < b) : 0 < a * b := obtain (n : ℕ) (Hn : 0 + succ n = a), from lt.elim Ha, obtain (m : ℕ) (Hm : 0 + succ m = b), from lt.elim Hb, lt.intro (eq.symm (calc a * b = (0 + succ n) * b : Hn ... = succ n * b : nat.zero_add ... = succ n * (0 + succ m) : {Hm⁻¹} ... = succ n * succ m : nat.zero_add ... = of_nat (succ n * succ m) : of_nat_mul_of_nat ... = of_nat (succ n * m + succ n) : nat.mul_succ ... = of_nat (succ (succ n * m + n)) : nat.add_succ ... = 0 + succ (succ n * m + n) : zero_add)) section open [classes] algebra protected definition linear_ordered_comm_ring [instance] [reducible] : algebra.linear_ordered_comm_ring int := ⦃algebra.linear_ordered_comm_ring, int.integral_domain, le := le, le_refl := le.refl, le_trans := @le.trans, le_antisymm := @le.antisymm, lt := lt, lt_iff_le_and_ne := lt_iff_le_and_ne, add_le_add_left := @add_le_add_left, mul_nonneg := @mul_nonneg, mul_pos := @mul_pos, le_iff_lt_or_eq := le_iff_lt_or_eq, le_total := le.total, zero_ne_one := zero_ne_one⦄ protected definition decidable_linear_ordered_comm_ring [instance] [reducible] : algebra.decidable_linear_ordered_comm_ring int := ⦃algebra.decidable_linear_ordered_comm_ring, int.linear_ordered_comm_ring, decidable_lt := decidable_lt⦄ definition ge [reducible] (a b : ℤ) := algebra.has_le.ge a b definition gt [reducible] (a b : ℤ) := algebra.has_lt.gt a b infix >= := int.ge infix ≥ := int.ge infix > := int.gt definition decidable_ge [instance] (a b : ℤ) : decidable (a ≥ b) := show decidable (b ≤ a), from _ definition decidable_gt [instance] (a b : ℤ) : decidable (a > b) := show decidable (b < a), from _ definition sign : ∀a : ℤ, ℤ := algebra.sign definition abs : ℤ → ℤ := algebra.abs migrate from algebra with int replacing has_le.ge → ge, has_lt.gt → gt, sign → sign, abs → abs, dvd → dvd, sub → sub end /- more facts specific to int -/ theorem nonneg_of_nat (n : ℕ) : 0 ≤ of_nat n := trivial theorem exists_eq_of_nat {a : ℤ} (H : 0 ≤ a) : ∃n : ℕ, a = of_nat n := obtain (n : ℕ) (H1 : 0 + of_nat n = a), from le.elim H, exists.intro n (!zero_add ▸ (H1⁻¹)) theorem exists_eq_neg_of_nat {a : ℤ} (H : a ≤ 0) : ∃n : ℕ, a = -(of_nat n) := have H2 : -a ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos H, obtain (n : ℕ) (Hn : -a = of_nat n), from exists_eq_of_nat H2, exists.intro n (eq_neg_of_eq_neg (Hn⁻¹)) theorem of_nat_nat_abs_of_nonneg {a : ℤ} (H : a ≥ 0) : of_nat (nat_abs a) = a := obtain (n : ℕ) (Hn : a = of_nat n), from exists_eq_of_nat H, Hn⁻¹ ▸ congr_arg of_nat (nat_abs_of_nat n) theorem of_nat_nat_abs_of_nonpos {a : ℤ} (H : a ≤ 0) : of_nat (nat_abs a) = -a := have H1 : (-a) ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos H, calc of_nat (nat_abs a) = of_nat (nat_abs (-a)) : nat_abs_neg ... = -a : of_nat_nat_abs_of_nonneg H1 theorem of_nat_nat_abs (b : ℤ) : nat_abs b = abs b := or.elim (le.total 0 b) (assume H : b ≥ 0, of_nat_nat_abs_of_nonneg H ⬝ (abs_of_nonneg H)⁻¹) (assume H : b ≤ 0, of_nat_nat_abs_of_nonpos H ⬝ (abs_of_nonpos H)⁻¹) theorem lt_of_add_one_le {a b : ℤ} (H : a + 1 ≤ b) : a < b := obtain n (H1 : a + 1 + n = b), from le.elim H, have H2 : a + succ n = b, by rewrite [-H1, add.assoc, add.comm 1], lt.intro H2 theorem add_one_le_of_lt {a b : ℤ} (H : a < b) : a + 1 ≤ b := obtain n (H1 : a + succ n = b), from lt.elim H, have H2 : a + 1 + n = b, by rewrite [-H1, add.assoc, add.comm 1], le.intro H2 theorem lt_add_one_of_le {a b : ℤ} (H : a ≤ b) : a < b + 1 := lt_add_of_le_of_pos H trivial theorem le_of_lt_add_one {a b : ℤ} (H : a < b + 1) : a ≤ b := have H1 : a + 1 ≤ b + 1, from add_one_le_of_lt H, le_of_add_le_add_right H1 theorem sub_one_le_of_lt {a b : ℤ} (H : a ≤ b) : a - 1 < b := lt_of_add_one_le (!sub_add_cancel⁻¹ ▸ H) theorem lt_of_sub_one_le {a b : ℤ} (H : a - 1 < b) : a ≤ b := !sub_add_cancel ▸ add_one_le_of_lt H theorem le_sub_one_of_lt {a b : ℤ} (H : a < b) : a ≤ b - 1 := le_of_lt_add_one (!sub_add_cancel⁻¹ ▸ H) theorem lt_of_le_sub_one {a b : ℤ} (H : a ≤ b - 1) : a < b := !sub_add_cancel ▸ (lt_add_one_of_le H) theorem of_nat_nonneg (n : ℕ) : of_nat n ≥ 0 := trivial theorem of_nat_pos {n : ℕ} (Hpos : #nat n > 0) : of_nat n > 0 := of_nat_lt_of_nat Hpos theorem sign_of_succ (n : nat) : sign (succ n) = 1 := sign_of_pos (of_nat_pos !nat.succ_pos) theorem exists_eq_neg_succ_of_nat {a : ℤ} : a < 0 → ∃m : ℕ, a = -[m +1] := int.cases_on a (take m H, absurd (of_nat_nonneg m) (not_le_of_lt H)) (take m H, exists.intro m rfl) end int