/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.function Author: Leonardo de Moura General operations on functions. -/ namespace function variables {A : Type} {B : Type} {C : Type} {D : Type} {E : Type} definition compose [reducible] (f : B → C) (g : A → B) : A → C := λx, f (g x) definition compose_right [reducible] (f : B → B → B) (g : A → B) : B → A → B := λ b a, f b (g a) definition compose_left [reducible] (f : B → B → B) (g : A → B) : A → B → B := λ a b, f (g a) b definition id [reducible] (a : A) : A := a definition on_fun [reducible] (f : B → B → C) (g : A → B) : A → A → C := λx y, f (g x) (g y) definition combine [reducible] (f : A → B → C) (op : C → D → E) (g : A → B → D) : A → B → E := λx y, op (f x y) (g x y) definition const [reducible] (B : Type) (a : A) : B → A := λx, a definition dcompose [reducible] {B : A → Type} {C : Π {x : A}, B x → Type} (f : Π {x : A} (y : B x), C y) (g : Πx, B x) : Πx, C (g x) := λx, f (g x) definition flip [reducible] {C : A → B → Type} (f : Πx y, C x y) : Πy x, C x y := λy x, f x y definition app [reducible] {B : A → Type} (f : Πx, B x) (x : A) : B x := f x definition curry [reducible] : (A × B → C) → A → B → C := λ f a b, f (a, b) definition uncurry [reducible] : (A → B → C) → (A × B → C) := λ f p, match p with (a, b) := f a b end theorem curry_uncurry (f : A → B → C) : curry (uncurry f) = f := rfl theorem uncurry_curry (f : A × B → C) : uncurry (curry f) = f := funext (λ p, match p with (a, b) := rfl end) precedence `∘'`:60 precedence `on`:1 precedence `$`:1 infixr ∘ := compose infixr ∘' := dcompose infixl on := on_fun infixr $ := app notation f `-[` op `]-` g := combine f op g lemma left_inv_eq {finv : B → A} {f : A → B} (linv : finv ∘ f = id) : ∀ x, finv (f x) = x := take x, show (finv ∘ f) x = x, by rewrite linv lemma right_inv_eq {finv : B → A} {f : A → B} (rinv : f ∘ finv = id) : ∀ x, f (finv x) = x := take x, show (f ∘ finv) x = x, by rewrite rinv definition injective (f : A → B) : Prop := ∀ a₁ a₂, f a₁ = f a₂ → a₁ = a₂ definition surjective (f : A → B) : Prop := ∀ b, ∃ a, f a = b definition has_left_inverse (f : A → B) : Prop := ∃ finv : B → A, finv ∘ f = id definition has_right_inverse (f : A → B) : Prop := ∃ finv : B → A, f ∘ finv = id lemma injective_of_has_left_inverse {f : A → B} : has_left_inverse f → injective f := assume h, take a b, assume faeqfb, obtain (finv : B → A) (inv : finv ∘ f = id), from h, calc a = finv (f a) : by rewrite (left_inv_eq inv) ... = finv (f b) : faeqfb ... = b : by rewrite (left_inv_eq inv) lemma surjective_of_has_right_inverse {f : A → B} : has_right_inverse f → surjective f := assume h, take b, obtain (finv : B → A) (inv : f ∘ finv = id), from h, let a : A := finv b in have h : f a = b, from calc f a = (f ∘ finv) b : rfl ... = id b : by rewrite (right_inv_eq inv) ... = b : rfl, exists.intro a h end function -- copy reducible annotations to top-level export [reduce-hints] function