import data.num data.bool open bool well_founded namespace pos_num definition lt_pred (a b : pos_num) : Prop := lt a b = tt definition not_lt_one1 (a : pos_num) : ¬ lt_pred a one := begin esimp {lt_pred}, intro H, apply (absurd_of_eq_ff_of_eq_tt (lt_one_right_eq_ff a) H) end open tactic well_founded print raw intro -- intro is overloaded definition not_lt_one2 (a : pos_num) : ¬ lt_pred a one := begin esimp {lt_pred}, intro H, apply (absurd_of_eq_ff_of_eq_tt (lt_one_right_eq_ff a) H) end end pos_num