/- Copyright (c) 2016 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad Homomorphisms between structures: is_add_hom : structures with has_add is_mul_hom : structures with has_mul is_module_hom : structures with has_add, has_smul is_ring_hom : structures with has_add, has_mul If you are working with a one particular kind of homomorphism, e.g. multiplicative, we recommend local abbreviation is_hom := @is_mul_hom These are all tentatively declared as type classes. The theorems which infer id and compose as instances are *not*, however, declared as instances: the first is rarely useful and the second makes class inference loop. Type class inference is useful here because usually a hypothesis like is_hom f is in the context. If you need an instance that the system does not infer, simply put it in the context, e.g. assert is_hom f, from ..., ... -/ import algebra.module data.set open function set variables {A B C : Type} /- additive structures -/ definition add_ker [has_zero B] (f : A → B) : set A := {a | f a = 0} proposition add_ker_eq [has_zero B] (f : A → B) : add_ker f = f '- '{0} := ext (take x, iff.intro (assume H, mem_preimage (mem_singleton_of_eq H)) (assume H, eq_of_mem_singleton (mem_of_mem_preimage H))) structure is_add_hom [class] [has_add A] [has_add B] (f : A → B) : Prop := (hom_add : ∀ a₁ a₂, f (a₁ + a₂) = f a₁ + f a₂) proposition hom_add [has_add A] [has_add B] (f : A → B) [H : is_add_hom f] (a₁ a₂ : A) : f (a₁ + a₂) = f a₁ + f a₂ := is_add_hom.hom_add _ _ f a₁ a₂ proposition is_add_hom_id [has_add A] : is_add_hom (@id A) := is_add_hom.mk (take a₁ a₂, rfl) proposition is_add_hom_comp [has_add A] [has_add B] [has_add C] {f : B → C} {g : A → B} [is_add_hom f] [is_add_hom g] : is_add_hom (f ∘ g) := is_add_hom.mk (take a₁ a₂, by esimp; rewrite *hom_add) section add_group_A_B variables [add_group A] [add_group B] proposition hom_zero (f : A → B) [is_add_hom f] : f (0 : A) = 0 := have f 0 + f 0 = f 0 + 0, by rewrite [-hom_add f, +add_zero], eq_of_add_eq_add_left this proposition hom_neg (f : A → B) [is_add_hom f] (a : A) : f (- a) = - f a := have f (- a) + f a = 0, by rewrite [-hom_add f, add.left_inv, hom_zero], eq_neg_of_add_eq_zero this proposition hom_sub (f : A → B) [is_add_hom f] (a₁ a₂ : A) : f (a₁ - a₂) = f a₁ - f a₂ := by rewrite [*sub_eq_add_neg, *hom_add, hom_neg] proposition injective_hom_add [add_group B] {f : A → B} [is_add_hom f] (H : ∀ x, f x = 0 → x = 0) : injective f := take x₁ x₂, suppose f x₁ = f x₂, have f (x₁ - x₂) = 0, by rewrite [hom_sub, this, sub_self], have x₁ - x₂ = 0, from H _ this, eq_of_sub_eq_zero this proposition eq_zero_of_injective_hom [add_group B] {f : A → B} [is_add_hom f] (injf : injective f) {a : A} (fa0 : f a = 0) : a = 0 := have f a = f 0, by rewrite [fa0, hom_zero], show a = 0, from injf this end add_group_A_B /- multiplicative structures -/ definition mul_ker [has_one B] (f : A → B) : set A := {a | f a = 1} proposition mul_ker_eq [has_one B] (f : A → B) : mul_ker f = f '- '{1} := ext (take x, iff.intro (assume H, mem_preimage (mem_singleton_of_eq H)) (assume H, eq_of_mem_singleton (mem_of_mem_preimage H))) structure is_mul_hom [class] [has_mul A] [has_mul B] (f : A → B) : Prop := (hom_mul : ∀ a₁ a₂, f (a₁ * a₂) = f a₁ * f a₂) proposition hom_mul [has_mul A] [has_mul B] (f : A → B) [H : is_mul_hom f] (a₁ a₂ : A) : f (a₁ * a₂) = f a₁ * f a₂ := is_mul_hom.hom_mul _ _ f a₁ a₂ proposition is_mul_hom_id [has_mul A] : is_mul_hom (@id A) := is_mul_hom.mk (take a₁ a₂, rfl) proposition is_mul_hom_comp [has_mul A] [has_mul B] [has_mul C] {f : B → C} {g : A → B} [is_mul_hom f] [is_mul_hom g] : is_mul_hom (f ∘ g) := is_mul_hom.mk (take a₁ a₂, by esimp; rewrite *hom_mul) section group_A_B variables [group A] [group B] proposition hom_one (f : A → B) [is_mul_hom f] : f (1 : A) = 1 := have f 1 * f 1 = f 1 * 1, by rewrite [-hom_mul f, *mul_one], eq_of_mul_eq_mul_left' this proposition hom_inv (f : A → B) [is_mul_hom f] (a : A) : f (a⁻¹) = (f a)⁻¹ := have f (a⁻¹) * f a = 1, by rewrite [-hom_mul f, mul.left_inv, hom_one], eq_inv_of_mul_eq_one this proposition injective_hom_mul [group B] {f : A → B} [is_mul_hom f] (H : ∀ x, f x = 1 → x = 1) : injective f := take x₁ x₂, suppose f x₁ = f x₂, have f (x₁ * x₂⁻¹) = 1, by rewrite [hom_mul, hom_inv, this, mul.right_inv], have x₁ * x₂⁻¹ = 1, from H _ this, eq_of_mul_inv_eq_one this proposition eq_one_of_injective_hom [group B] {f : A → B} [is_mul_hom f] (injf : injective f) {a : A} (fa1 : f a = 1) : a = 1 := have f a = f 1, by rewrite [fa1, hom_one], show a = 1, from injf this end group_A_B /- modules -/ structure is_module_hom [class] (R : Type) {M₁ M₂ : Type} [has_scalar R M₁] [has_scalar R M₂] [has_add M₁] [has_add M₂] (f : M₁ → M₂) extends is_add_hom f := (hom_smul : ∀ r : R, ∀ a : M₁, f (r • a) = r • f a) section module_hom variables {R : Type} {M₁ M₂ M₃ : Type} variables [has_scalar R M₁] [has_scalar R M₂] [has_scalar R M₃] variables [has_add M₁] [has_add M₂] [has_add M₃] variables (g : M₂ → M₃) (f : M₁ → M₂) [is_module_hom R g] [is_module_hom R f] proposition hom_smul (r : R) (a : M₁) : f (r • a) = r • f a := is_module_hom.hom_smul _ _ _ _ f r a proposition is_module_hom_id : is_module_hom R (@id M₁) := is_module_hom.mk (λ a₁ a₂, rfl) (λ r a, rfl) proposition is_module_hom_comp : is_module_hom R (g ∘ f) := is_module_hom.mk (take a₁ a₂, by esimp; rewrite *hom_add) (take r a, by esimp; rewrite [hom_smul f, hom_smul g]) proposition hom_smul_add_smul (a b : R) (u v : M₁) : f (a • u + b • v) = a • f u + b • f v := by rewrite [hom_add, +hom_smul f] end module_hom /- rings -/ structure is_ring_hom [class] {R₁ R₂ : Type} [has_mul R₁] [has_mul R₂] [has_add R₁] [has_add R₂] (f : R₁ → R₂) extends is_add_hom f, is_mul_hom f section semiring variables {R₁ R₂ R₃ : Type} [semiring R₁] [semiring R₂] [semiring R₃] variables (g : R₂ → R₃) (f : R₁ → R₂) [is_ring_hom g] [is_ring_hom f] proposition is_ring_hom_id : is_ring_hom (@id R₁) := is_ring_hom.mk (λ a₁ a₂, rfl) (λ a₁ a₂, rfl) proposition is_ring_hom_comp : is_ring_hom (g ∘ f) := is_ring_hom.mk (take a₁ a₂, by esimp; rewrite *hom_add) (take r a, by esimp; rewrite [hom_mul f, hom_mul g]) proposition hom_mul_add_mul (a b c d : R₁) : f (a * b + c * d) = f a * f b + f c * f d := by rewrite [hom_add, +hom_mul] end semiring