-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Jeremy Avigad -- logic.connectives.identities -- ============================ -- Useful logical identities. In the absence of propositional extensionality, some of the -- calculations use the type class support provided by logic.connectives.instances import logic.core.instances using relation theorem or_right_comm (a b c : Prop) : (a ∨ b) ∨ c ↔ (a ∨ c) ∨ b := calc (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) : or_assoc ... ↔ a ∨ (c ∨ b) : {or_comm} ... ↔ (a ∨ c) ∨ b : iff_symm or_assoc theorem or_left_comm (a b c : Prop) : a ∨ (b ∨ c)↔ b ∨ (a ∨ c) := calc a ∨ (b ∨ c) ↔ (a ∨ b) ∨ c : iff_symm or_assoc ... ↔ (b ∨ a) ∨ c : {or_comm} ... ↔ b ∨ (a ∨ c) : or_assoc theorem and_right_comm (a b c : Prop) : (a ∧ b) ∧ c ↔ (a ∧ c) ∧ b := calc (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) : and_assoc ... ↔ a ∧ (c ∧ b) : {and_comm} ... ↔ (a ∧ c) ∧ b : iff_symm and_assoc theorem and_left_comm (a b c : Prop) : a ∧ (b ∧ c)↔ b ∧ (a ∧ c) := calc a ∧ (b ∧ c) ↔ (a ∧ b) ∧ c : iff_symm and_assoc ... ↔ (b ∧ a) ∧ c : {and_comm} ... ↔ b ∧ (a ∧ c) : and_assoc