/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ import data.nat data.list data.equiv open nat function option definition stream (A : Type) := nat → A namespace stream variables {A B C : Type} definition cons (a : A) (s : stream A) : stream A := λ i, match i with | 0 := a | succ n := s n end notation h :: t := cons h t definition head [reducible] (s : stream A) : A := s 0 definition tail (s : stream A) : stream A := λ i, s (i+1) definition drop (n : nat) (s : stream A) : stream A := λ i, s (i+n) definition nth [reducible] (n : nat) (s : stream A) : A := s n protected theorem eta (s : stream A) : head s :: tail s = s := funext (λ i, begin cases i, repeat reflexivity end) theorem nth_zero_cons (a : A) (s : stream A) : nth 0 (a :: s) = a := rfl theorem head_cons (a : A) (s : stream A) : head (a :: s) = a := rfl theorem tail_cons (a : A) (s : stream A) : tail (a :: s) = s := rfl theorem tail_drop (n : nat) (s : stream A) : tail (drop n s) = drop n (tail s) := funext (λ i, begin esimp [tail, drop], congruence, rewrite add.right_comm end) theorem nth_drop (n m : nat) (s : stream A) : nth n (drop m s) = nth (n+m) s := rfl theorem tail_eq_drop (s : stream A) : tail s = drop 1 s := rfl theorem drop_drop (n m : nat) (s : stream A) : drop n (drop m s) = drop (n+m) s := funext (λ i, begin esimp [drop], rewrite add.assoc end) theorem nth_succ (n : nat) (s : stream A) : nth (succ n) s = nth n (tail s) := rfl theorem drop_succ (n : nat) (s : stream A) : drop (succ n) s = drop n (tail s) := rfl protected theorem ext {s₁ s₂ : stream A} : (∀ n, nth n s₁ = nth n s₂) → s₁ = s₂ := assume h, funext h definition all (p : A → Prop) (s : stream A) := ∀ n, p (nth n s) definition any (p : A → Prop) (s : stream A) := ∃ n, p (nth n s) theorem all_def (p : A → Prop) (s : stream A) : all p s = ∀ n, p (nth n s) := rfl theorem any_def (p : A → Prop) (s : stream A) : any p s = ∃ n, p (nth n s) := rfl definition mem (a : A) (s : stream A) := any (λ b, a = b) s notation e ∈ s := mem e s theorem mem_cons (a : A) (s : stream A) : a ∈ (a::s) := exists.intro 0 rfl theorem mem_cons_of_mem {a : A} {s : stream A} (b : A) : a ∈ s → a ∈ b :: s := assume ains, obtain n (h : a = nth n s), from ains, exists.intro (succ n) (by rewrite [nth_succ, tail_cons, h]) theorem eq_or_mem_of_mem_cons {a b : A} {s : stream A} : a ∈ b::s → a = b ∨ a ∈ s := assume ainbs, obtain n (h : a = nth n (b::s)), from ainbs, begin cases n with n', {left, exact h}, {right, rewrite [nth_succ at h, tail_cons at h], existsi n', exact h} end theorem mem_of_nth_eq {n : nat} {s : stream A} {a : A} : a = nth n s → a ∈ s := assume h, exists.intro n h section map variable (f : A → B) definition map (s : stream A) : stream B := λ n, f (nth n s) theorem drop_map (n : nat) (s : stream A) : drop n (map f s) = map f (drop n s) := stream.ext (λ i, rfl) theorem nth_map (n : nat) (s : stream A) : nth n (map f s) = f (nth n s) := rfl theorem tail_map (s : stream A) : tail (map f s) = map f (tail s) := begin rewrite tail_eq_drop end theorem head_map (s : stream A) : head (map f s) = f (head s) := rfl theorem map_eq (s : stream A) : map f s = f (head s) :: map f (tail s) := by rewrite [-stream.eta, tail_map, head_map] theorem map_cons (a : A) (s : stream A) : map f (a :: s) = f a :: map f s := by rewrite [-stream.eta, map_eq] theorem map_id (s : stream A) : map id s = s := rfl theorem map_map (g : B → C) (f : A → B) (s : stream A) : map g (map f s) = map (g ∘ f) s := rfl theorem mem_map {a : A} {s : stream A} : a ∈ s → f a ∈ map f s := assume ains, obtain n (h : a = nth n s), from ains, exists.intro n (by rewrite [nth_map, h]) end map section zip variable (f : A → B → C) definition zip (s₁ : stream A) (s₂ : stream B) : stream C := λ n, f (nth n s₁) (nth n s₂) theorem drop_zip (n : nat) (s₁ : stream A) (s₂ : stream B) : drop n (zip f s₁ s₂) = zip f (drop n s₁) (drop n s₂) := stream.ext (λ i, rfl) theorem nth_zip (n : nat) (s₁ : stream A) (s₂ : stream B) : nth n (zip f s₁ s₂) = f (nth n s₁) (nth n s₂) := rfl theorem head_zip (s₁ : stream A) (s₂ : stream B) : head (zip f s₁ s₂) = f (head s₁) (head s₂) := rfl theorem tail_zip (s₁ : stream A) (s₂ : stream B) : tail (zip f s₁ s₂) = zip f (tail s₁) (tail s₂) := rfl theorem zip_eq (s₁ : stream A) (s₂ : stream B) : zip f s₁ s₂ = f (head s₁) (head s₂) :: zip f (tail s₁) (tail s₂) := by rewrite [-stream.eta] end zip definition const (a : A) : stream A := λ n, a theorem mem_const (a : A) : a ∈ const a := exists.intro 0 rfl theorem const_eq (a : A) : const a = a :: const a := begin apply stream.ext, intro n, cases n, repeat reflexivity end theorem tail_const (a : A) : tail (const a) = const a := by rewrite [const_eq at {1}] theorem map_const (f : A → B) (a : A) : map f (const a) = const (f a) := rfl theorem nth_const (n : nat) (a : A) : nth n (const a) = a := rfl theorem drop_const (n : nat) (a : A) : drop n (const a) = const a := stream.ext (λ i, rfl) definition iterate (f : A → A) (a : A) : stream A := λ n, nat.rec_on n a (λ n r, f r) theorem head_iterate (f : A → A) (a : A) : head (iterate f a) = a := rfl theorem tail_iterate (f : A → A) (a : A) : tail (iterate f a) = iterate f (f a) := begin apply funext, intro n, induction n with n' IH, {reflexivity}, {esimp [tail, iterate] at *, rewrite add_one at *, esimp at *, rewrite IH} end theorem iterate_eq (f : A → A) (a : A) : iterate f a = a :: iterate f (f a) := begin rewrite [-stream.eta], congruence, exact !tail_iterate end theorem nth_zero_iterate (f : A → A) (a : A) : nth 0 (iterate f a) = a := rfl theorem nth_succ_iterate (n : nat) (f : A → A) (a : A) : nth (succ n) (iterate f a) = nth n (iterate f (f a)) := by rewrite [nth_succ, tail_iterate] section bisim variable (R : stream A → stream A → Prop) local infix ~ := R definition is_bisimulation := ∀ ⦃s₁ s₂⦄, s₁ ~ s₂ → head s₁ = head s₂ ∧ tail s₁ ~ tail s₂ lemma nth_of_bisim (bisim : is_bisimulation R) : ∀ {s₁ s₂} n, s₁ ~ s₂ → nth n s₁ = nth n s₂ ∧ drop (n+1) s₁ ~ drop (n+1) s₂ | s₁ s₂ 0 h := bisim h | s₁ s₂ (n+1) h := obtain h₁ (trel : tail s₁ ~ tail s₂), from bisim h, nth_of_bisim n trel -- If two streams are bisimilar, then they are equal theorem eq_of_bisim (bisim : is_bisimulation R) : ∀ {s₁ s₂}, s₁ ~ s₂ → s₁ = s₂ := λ s₁ s₂ r, stream.ext (λ n, and.elim_left (nth_of_bisim R bisim n r)) end bisim theorem bisim_simple (s₁ s₂ : stream A) : head s₁ = head s₂ → s₁ = tail s₁ → s₂ = tail s₂ → s₁ = s₂ := assume hh ht₁ ht₂, eq_of_bisim (λ s₁ s₂, head s₁ = head s₂ ∧ s₁ = tail s₁ ∧ s₂ = tail s₂) (λ s₁ s₂ h, obtain h₁ h₂ h₃, from h, begin constructor, exact h₁, rewrite [-h₂, -h₃], exact h end) (and.intro hh (and.intro ht₁ ht₂)) -- AKA coinduction freeze theorem coinduction.{l} {A : Type.{l}} {s₁ s₂ : stream A} : head s₁ = head s₂ → (∀ (B : Type.{l}) (fr : stream A → B), fr s₁ = fr s₂ → fr (tail s₁) = fr (tail s₂)) → s₁ = s₂ := assume hh ht, eq_of_bisim (λ s₁ s₂, head s₁ = head s₂ ∧ ∀ (B : Type) (fr : stream A → B), fr s₁ = fr s₂ → fr (tail s₁) = fr (tail s₂)) (λ s₁ s₂ h, have h₁ : head s₁ = head s₂, from and.elim_left h, have h₂ : head (tail s₁) = head (tail s₂), from and.elim_right h A (@head A) h₁, have h₃ : ∀ (B : Type) (fr : stream A → B), fr (tail s₁) = fr (tail s₂) → fr (tail (tail s₁)) = fr (tail (tail s₂)), from λ B fr, and.elim_right h B (λ s, fr (tail s)), and.intro h₁ (and.intro h₂ h₃)) (and.intro hh ht) theorem iterate_id (a : A) : iterate id a = const a := coinduction rfl (λ B fr ch, by rewrite [tail_iterate, tail_const]; exact ch) local attribute stream [reducible] theorem map_iterate (f : A → A) (a : A) : iterate f (f a) = map f (iterate f a) := begin apply funext, intro n, induction n with n' IH, {reflexivity}, { esimp [map, iterate, nth] at *, rewrite IH } end section corec definition corec (f : A → B) (g : A → A) : A → stream B := λ a, map f (iterate g a) theorem corec_def (f : A → B) (g : A → A) (a : A) : corec f g a = map f (iterate g a) := rfl theorem corec_eq (f : A → B) (g : A → A) (a : A) : corec f g a = f a :: corec f g (g a) := by rewrite [corec_def, map_eq, head_iterate, tail_iterate] theorem corec_id_id_eq_const (a : A) : corec id id a = const a := by rewrite [corec_def, map_id, iterate_id] theorem corec_id_f_eq_iterate (f : A → A) (a : A) : corec id f a = iterate f a := rfl end corec -- corec is also known as unfold definition unfolds (g : A → B) (f : A → A) (a : A) : stream B := corec g f a theorem unfolds_eq (g : A → B) (f : A → A) (a : A) : unfolds g f a = g a :: unfolds g f (f a) := by esimp [ unfolds ]; rewrite [corec_eq] theorem nth_unfolds_head_tail : ∀ (n : nat) (s : stream A), nth n (unfolds head tail s) = nth n s := begin intro n, induction n with n' ih, {intro s, reflexivity}, {intro s, rewrite [*nth_succ, unfolds_eq, tail_cons, ih]} end theorem unfolds_head_eq : ∀ (s : stream A), unfolds head tail s = s := λ s, stream.ext (λ n, nth_unfolds_head_tail n s) definition interleave (s₁ s₂ : stream A) : stream A := corec (λ p, obtain s₁ s₂, from p, head s₁) (λ p, obtain s₁ s₂, from p, (s₂, tail s₁)) (s₁, s₂) infix `⋈`:65 := interleave theorem interleave_eq (s₁ s₂ : stream A) : s₁ ⋈ s₂ = head s₁ :: head s₂ :: (tail s₁ ⋈ tail s₂) := begin esimp [interleave], rewrite corec_eq, esimp, congruence, rewrite corec_eq end theorem tail_interleave (s₁ s₂ : stream A) : tail (s₁ ⋈ s₂) = s₂ ⋈ (tail s₁) := by esimp [interleave]; rewrite corec_eq theorem interleave_tail_tail (s₁ s₂ : stream A) : tail s₁ ⋈ tail s₂ = tail (tail (s₁ ⋈ s₂)) := by rewrite [interleave_eq s₁ s₂] theorem nth_interleave_left : ∀ (n : nat) (s₁ s₂ : stream A), nth (2*n) (s₁ ⋈ s₂) = nth n s₁ | 0 s₁ s₂ := rfl | (succ n) s₁ s₂ := begin change nth (succ (succ (2*n))) (s₁ ⋈ s₂) = nth (succ n) s₁, rewrite [*nth_succ, interleave_eq, *tail_cons, nth_interleave_left] end theorem nth_interleave_right : ∀ (n : nat) (s₁ s₂ : stream A), nth (2*n+1) (s₁ ⋈ s₂) = nth n s₂ | 0 s₁ s₂ := rfl | (succ n) s₁ s₂ := begin change nth (succ (succ (2*n+1))) (s₁ ⋈ s₂) = nth (succ n) s₂, rewrite [*nth_succ, interleave_eq, *tail_cons, nth_interleave_right] end theorem mem_interleave_left {a : A} {s₁ : stream A} (s₂ : stream A) : a ∈ s₁ → a ∈ s₁ ⋈ s₂ := assume ains₁, obtain n h, from ains₁, exists.intro (2*n) (by rewrite [h, nth_interleave_left]) theorem mem_interleave_right {a : A} {s₁ : stream A} (s₂ : stream A) : a ∈ s₂ → a ∈ s₁ ⋈ s₂ := assume ains₂, obtain n h, from ains₂, exists.intro (2*n+1) (by rewrite [h, nth_interleave_right]) definition even (s : stream A) : stream A := corec (λ s, head s) (λ s, tail (tail s)) s definition odd (s : stream A) : stream A := even (tail s) theorem odd_eq (s : stream A) : odd s = even (tail s) := rfl theorem head_even (s : stream A) : head (even s) = head s := rfl theorem tail_even (s : stream A) : tail (even s) = even (tail (tail s)) := by esimp [even]; rewrite corec_eq theorem even_cons_cons (a₁ a₂ : A) (s : stream A) : even (a₁ :: a₂ :: s) = a₁ :: even s := by esimp [even]; rewrite corec_eq theorem even_tail (s : stream A) : even (tail s) = odd s := rfl theorem even_interleave (s₁ s₂ : stream A) : even (s₁ ⋈ s₂) = s₁ := eq_of_bisim (λ s₁' s₁, ∃ s₂, s₁' = even (s₁ ⋈ s₂)) (λ s₁' s₁ h, obtain s₂ (h₁ : s₁' = even (s₁ ⋈ s₂)), from h, begin rewrite h₁, constructor, {reflexivity}, {existsi (tail s₂), rewrite [interleave_eq, even_cons_cons, tail_cons]} end) (exists.intro s₂ rfl) theorem interleave_even_odd (s₁ : stream A) : even s₁ ⋈ odd s₁ = s₁ := eq_of_bisim (λ s' s, s' = even s ⋈ odd s) (λ s' s (h : s' = even s ⋈ odd s), begin rewrite h, constructor, {reflexivity}, {esimp, rewrite [*odd_eq, tail_interleave, tail_even]} end) rfl theorem nth_even : ∀ (n : nat) (s : stream A), nth n (even s) = nth (2*n) s | 0 s := rfl | (succ n) s := begin change nth (succ n) (even s) = nth (succ (succ (2 * n))) s, rewrite [+nth_succ, tail_even, nth_even] end theorem nth_odd : ∀ (n : nat) (s : stream A), nth n (odd s) = nth (2*n + 1) s := λ n s, by rewrite [odd_eq, nth_even] theorem mem_of_mem_even (a : A) (s : stream A) : a ∈ even s → a ∈ s := assume aines, obtain n h, from aines, exists.intro (2*n) (by rewrite [h, nth_even]) theorem mem_of_mem_odd (a : A) (s : stream A) : a ∈ odd s → a ∈ s := assume ainos, obtain n h, from ainos, exists.intro (2*n+1) (by rewrite [h, nth_odd]) open list definition append : list A → stream A → stream A | [] s := s | (a::l) s := a :: append l s theorem nil_append (s : stream A) : append [] s = s := rfl theorem cons_append (a : A) (l : list A) (s : stream A) : append (a::l) s = a :: append l s := rfl infix ++ := append -- the following local notation is used just to make the following theorem clear local infix `++ₛ`:65 := append theorem append_append : ∀ (l₁ l₂ : list A) (s : stream A), (l₁ ++ l₂) ++ₛ s = l₁ ++ (l₂ ++ₛ s) | [] l₂ s := rfl | (a::l₁) l₂ s := by rewrite [list.append_cons, *cons_append, append_append] theorem map_append (f : A → B) : ∀ (l : list A) (s : stream A), map f (l ++ s) = list.map f l ++ map f s | [] s := rfl | (a::l) s := by rewrite [cons_append, list.map_cons, map_cons, cons_append, map_append] theorem drop_append : ∀ (l : list A) (s : stream A), drop (length l) (l ++ s) = s | [] s := by esimp | (a::l) s := by rewrite [length_cons, add_one, drop_succ, cons_append, tail_cons, drop_append] theorem append_head_tail (s : stream A) : [head s] ++ tail s = s := by rewrite [cons_append, nil_append, stream.eta] theorem mem_append_right : ∀ {a : A} (l : list A) {s : stream A}, a ∈ s → a ∈ l ++ s | a [] s h := h | a (b::l) s h := have ih : a ∈ l ++ s, from mem_append_right l h, !mem_cons_of_mem ih theorem mem_append_left : ∀ {a : A} {l : list A} (s : stream A), a ∈ l → a ∈ l ++ s | a [] s h := absurd h !not_mem_nil | a (b::l) s h := or.elim (list.eq_or_mem_of_mem_cons h) (λ (aeqb : a = b), exists.intro 0 aeqb) (λ (ainl : a ∈ l), mem_cons_of_mem b (mem_append_left s ainl)) definition approx : nat → stream A → list A | 0 s := [] | (n+1) s := head s :: approx n (tail s) theorem approx_zero (s : stream A) : approx 0 s = [] := rfl theorem approx_succ (n : nat) (s : stream A) : approx (succ n) s = head s :: approx n (tail s) := rfl theorem nth_approx : ∀ (n : nat) (s : stream A), list.nth (approx (succ n) s) n = some (nth n s) | 0 s := rfl | (n+1) s := begin rewrite [approx_succ, add_one, list.nth_succ, nth_approx] end theorem append_approx_drop : ∀ (n : nat) (s : stream A), append (approx n s) (drop n s) = s := begin intro n, induction n with n' ih, {intro s, reflexivity}, {intro s, rewrite [approx_succ, drop_succ, cons_append, ih (tail s), stream.eta]} end -- Take lemma reduces a proof of equality of infinite streams to an -- induction over all their finite approximations. theorem take_lemma (s₁ s₂ : stream A) : (∀ (n : nat), approx n s₁ = approx n s₂) → s₁ = s₂ := begin intro h, apply stream.ext, intro n, induction n with n ih, {injection (h 1) with aux, exact aux}, {have h₁ : some (nth (succ n) s₁) = some (nth (succ n) s₂), by rewrite [-*nth_approx, h (succ (succ n))], injection h₁, assumption} end -- auxiliary definition for cycle corecursive definition private definition cycle_f : A × list A × A × list A → A | (v, _, _, _) := v -- auxiliary definition for cycle corecursive definition private definition cycle_g : A × list A × A × list A → A × list A × A × list A | (v₁, [], v₀, l₀) := (v₀, l₀, v₀, l₀) | (v₁, v₂::l₂, v₀, l₀) := (v₂, l₂, v₀, l₀) private lemma cycle_g_cons (a : A) (a₁ : A) (l₁ : list A) (a₀ : A) (l₀ : list A) : cycle_g (a, a₁::l₁, a₀, l₀) = (a₁, l₁, a₀, l₀) := rfl definition cycle : Π (l : list A), l ≠ nil → stream A | [] h := absurd rfl h | (a::l) h := corec cycle_f cycle_g (a, l, a, l) theorem cycle_eq : ∀ (l : list A) (h : l ≠ nil), cycle l h = l ++ cycle l h | [] h := absurd rfl h | (a::l) h := have gen : ∀ l' a', corec cycle_f cycle_g (a', l', a, l) = (a' :: l') ++ₛ corec cycle_f cycle_g (a, l, a, l), begin intro l', induction l' with a₁ l₁ ih, {intro a', rewrite [corec_eq]}, {intro a', rewrite [corec_eq, cycle_g_cons, ih a₁]} end, gen l a theorem mem_cycle {a : A} {l : list A} : ∀ (h : l ≠ []), a ∈ l → a ∈ cycle l h := assume h ainl, by rewrite [cycle_eq]; exact !mem_append_left ainl theorem cycle_singleton (a : A) (h : [a] ≠ nil) : cycle [a] h = const a := coinduction rfl (λ B fr ch, by rewrite [cycle_eq, const_eq]; exact ch) definition tails (s : stream A) : stream (stream A) := corec id tail (tail s) theorem tails_eq (s : stream A) : tails s = tail s :: tails (tail s) := by esimp [tails]; rewrite [corec_eq] theorem nth_tails : ∀ (n : nat) (s : stream A), nth n (tails s) = drop n (tail s) := begin intro n, induction n with n' ih, {intros, reflexivity}, {intro s, rewrite [nth_succ, drop_succ, tails_eq, tail_cons, ih]} end theorem tails_eq_iterate (s : stream A) : tails s = iterate tail (tail s) := rfl definition inits_core (l : list A) (s : stream A) : stream (list A) := corec prod.pr1 (λ p, match p with (l', s') := (l' ++ [head s'], tail s') end) (l, s) definition inits (s : stream A) : stream (list A) := inits_core [head s] (tail s) theorem inits_core_eq (l : list A) (s : stream A) : inits_core l s = l :: inits_core (l ++ [head s]) (tail s) := by esimp [inits_core]; rewrite [corec_eq] theorem tail_inits (s : stream A) : tail (inits s) = inits_core [head s, head (tail s)] (tail (tail s)) := by esimp [inits]; rewrite inits_core_eq theorem inits_tail (s : stream A) : inits (tail s) = inits_core [head (tail s)] (tail (tail s)) := rfl theorem cons_nth_inits_core : ∀ (a : A) (n : nat) (l : list A) (s : stream A), a :: nth n (inits_core l s) = nth n (inits_core (a::l) s) := begin intro a n, induction n with n' ih, {intros, reflexivity}, {intro l s, rewrite [*nth_succ, inits_core_eq, +tail_cons, ih, inits_core_eq (a::l) s] } end theorem nth_inits : ∀ (n : nat) (s : stream A), nth n (inits s) = approx (succ n) s := begin intro n, induction n with n' ih, {intros, reflexivity}, {intros, rewrite [nth_succ, approx_succ, -ih, tail_inits, inits_tail, cons_nth_inits_core]} end theorem inits_eq (s : stream A) : inits s = [head s] :: map (list.cons (head s)) (inits (tail s)) := begin apply stream.ext, intro n, cases n, {reflexivity}, {rewrite [nth_inits, nth_succ, tail_cons, nth_map, nth_inits]} end theorem zip_inits_tails (s : stream A) : zip append (inits s) (tails s) = const s := begin apply stream.ext, intro n, rewrite [nth_zip, nth_inits, nth_tails, nth_const, approx_succ, cons_append, append_approx_drop, stream.eta] end definition pure (a : A) : stream A := const a definition apply (f : stream (A → B)) (s : stream A) : stream B := λ n, (nth n f) (nth n s) infix `⊛`:75 := apply -- input as \o* theorem identity (s : stream A) : pure id ⊛ s = s := rfl theorem composition (g : stream (B → C)) (f : stream (A → B)) (s : stream A) : pure comp ⊛ g ⊛ f ⊛ s = g ⊛ (f ⊛ s) := rfl theorem homomorphism (f : A → B) (a : A) : pure f ⊛ pure a = pure (f a) := rfl theorem interchange (fs : stream (A → B)) (a : A) : fs ⊛ pure a = pure (λ f, f a) ⊛ fs := rfl theorem map_eq_apply (f : A → B) (s : stream A) : map f s = pure f ⊛ s := rfl definition nats : stream nat := λ n, n theorem nth_nats (n : nat) : nth n nats = n := rfl theorem nats_eq : nats = 0 :: map succ nats := begin apply stream.ext, intro n, cases n, reflexivity, rewrite [nth_succ] end section open equiv lemma stream_equiv_of_equiv {A B : Type} : A ≃ B → stream A ≃ stream B | (mk f g l r) := mk (map f) (map g) begin intros, rewrite [map_map, id_of_left_inverse l, map_id] end begin intros, rewrite [map_map, id_of_right_inverse r, map_id] end end definition lex (rel : A → A → Prop) (s₁ s₂ : stream A) : Prop := ∃ i, rel (nth i s₁) (nth i s₂) ∧ ∀ j, j < i → nth j s₁ = nth j s₂ definition lex.trans {s₁ s₂ s₃} {rel : A → A → Prop} : transitive rel → lex rel s₁ s₂ → lex rel s₂ s₃ → lex rel s₁ s₃ := assume htrans h₁ h₂, obtain (i₁ : nat) hlt₁ he₁, from h₁, obtain (i₂ : nat) hlt₂ he₂, from h₂, lt.by_cases (λ i₁lti₂ : i₁ < i₂, have aux : nth i₁ s₂ = nth i₁ s₃, from he₂ _ i₁lti₂, begin existsi i₁, split, {rewrite -aux, exact hlt₁}, {intro j jlti₁, transitivity nth j s₂, exact !he₁ jlti₁, exact !he₂ (lt.trans jlti₁ i₁lti₂)} end) (λ i₁eqi₂ : i₁ = i₂, begin subst i₂, existsi i₁, split, exact htrans hlt₁ hlt₂, intro j jlti₁, transitivity nth j s₂, exact !he₁ jlti₁; exact !he₂ jlti₁ end) (λ i₂lti₁ : i₂ < i₁, have nth i₂ s₁ = nth i₂ s₂, from he₁ _ i₂lti₁, begin existsi i₂, split, {rewrite this, exact hlt₂}, {intro j jlti₂, transitivity nth j s₂, exact !he₁ (lt.trans jlti₂ i₂lti₁), exact !he₂ jlti₂} end) end stream