-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura -- logic.axioms.funext -- =================== import logic.cast algebra.function data.sigma open function eq.ops -- Function extensionality axiom funext : ∀ {A : Type} {B : A → Type} {f g : Π a, B a} (H : ∀ a, f a = g a), f = g namespace function variables {A B C D: Type} theorem compose_assoc (f : C → D) (g : B → C) (h : A → B) : (f ∘ g) ∘ h = f ∘ (g ∘ h) := funext (take x, rfl) theorem compose_id_left (f : A → B) : id ∘ f = f := funext (take x, rfl) theorem compose_id_right (f : A → B) : f ∘ id = f := funext (take x, rfl) theorem compose_const_right (f : B → C) (b : B) : f ∘ (const A b) = const A (f b) := funext (take x, rfl) theorem hfunext {A : Type} {B : A → Type} {B' : A → Type} {f : Π x, B x} {g : Π x, B' x} (H : ∀ a, f a == g a) : f == g := let HH : B = B' := (funext (λ x, heq.type_eq (H x))) in cast_to_heq (funext (λ a, heq.to_eq (heq.trans (cast_app' HH f a) (H a)))) end function