Set: pp::colors Set: pp::unicode Imported 'macros' Using: Nat Assumed: Induction Failed to solve ⊢ (?M::10 ≈ @mp) ⊕ (?M::10 ≈ eq::@mp) ⊕ (?M::10 ≈ forall::@elim) (line: 11: pos: 5) Overloading at (forall::@elim | eq::@mp | @mp) _ _ Induction _ Failed to solve ⊢ (ℕ → Bool) → Bool ≺ Bool (line: 11: pos: 5) Type of argument 3 must be convertible to the expected type in the application of @mp with arguments: ?M::7 λ P : ℕ → Bool, P 0 ⇒ (∀ n : ℕ, P n ⇒ P (n + 1)) ⇒ (∀ n : ℕ, P n) Induction ?M::9 Failed to solve ⊢ ∀ P : ℕ → Bool, P 0 ⇒ (∀ n : ℕ, P n ⇒ P (n + 1)) ⇒ (∀ n : ℕ, P n) ≺ ?M::7 == ?M::8 (line: 11: pos: 5) Type of argument 3 must be convertible to the expected type in the application of eq::@mp with arguments: ?M::7 ?M::8 Induction ?M::9 Failed to solve ⊢ (?M::17 ≈ @mp) ⊕ (?M::17 ≈ eq::@mp) ⊕ (?M::17 ≈ forall::@elim) (line: 12: pos: 6) Overloading at (forall::@elim | eq::@mp | @mp) _ _ ((forall::@elim | eq::@mp | @mp) _ _ Induction _) (forall::intro (λ m : _, Nat::add::zerol m ⋈ symm (Nat::add::zeror m))) Failed to solve ⊢ (?M::34 ≈ @mp) ⊕ (?M::34 ≈ eq::@mp) ⊕ (?M::34 ≈ forall::@elim) (line: 15: pos: 5) Overloading at let κ::1 := (forall::@elim | eq::@mp | @mp) _ _ ((forall::@elim | eq::@mp | @mp) _ _ Induction _) (forall::intro (λ m : _, Nat::add::zerol m ⋈ symm (Nat::add::zeror m))), κ::2 := λ n : _, discharge (λ iH : _, forall::intro (λ m : _, Nat::add::succl n m ⋈ subst (refl (n + m + 1)) iH ⋈ symm (Nat::add::succr m n))) in (forall::@elim | eq::@mp | @mp) _ _ κ::1 (forall::intro κ::2) Failed to solve ⊢ ∀ n : ℕ, ?M::9 n ≺ ∀ n m : ℕ, n + m = m + n (line: 15: pos: 5) Type of definition 'Comm1' must be convertible to expected type. Failed to solve ⊢ (∀ n : ℕ, ?M::9 n ⇒ ?M::9 (n + 1)) ⇒ (∀ n : ℕ, ?M::9 n) ≺ ?M::3 == ?M::4 (line: 15: pos: 5) Type of argument 3 must be convertible to the expected type in the application of eq::@mp with arguments: ?M::3 ?M::4 Induction ◂ ?M::9 ◂ forall::intro (λ m : ℕ, Nat::add::zerol m ⋈ symm (Nat::add::zeror m)) forall::intro (λ n : ℕ, discharge (λ iH : ?M::20, forall::intro (λ m : ℕ, Nat::add::succl n m ⋈ subst (refl (n + m + 1)) iH ⋈ symm (Nat::add::succr m n)))) Failed to solve ⊢ Bool ≺ ?M::3 → Bool (line: 15: pos: 5) Type of argument 3 must be convertible to the expected type in the application of forall::@elim with arguments: ?M::3 ∀ n : ℕ, ?M::9 n Induction ◂ ?M::9 ◂ forall::intro (λ m : ℕ, Nat::add::zerol m ⋈ symm (Nat::add::zeror m)) forall::intro (λ n : ℕ, discharge (λ iH : ?M::20, forall::intro (λ m : ℕ, Nat::add::succl n m ⋈ subst (refl (n + m + 1)) iH ⋈ symm (Nat::add::succr m n)))) Failed to solve ⊢ ?M::9 0 ⇒ (∀ n : ℕ, ?M::9 n ⇒ ?M::9 (n + 1)) ⇒ (∀ n : ℕ, ?M::9 n) ≺ ?M::5 == ?M::6 (line: 12: pos: 6) Type of argument 3 must be convertible to the expected type in the application of eq::@mp with arguments: ?M::5 ?M::6 Induction ◂ ?M::9 forall::intro (λ m : ℕ, Nat::add::zerol m ⋈ symm (Nat::add::zeror m)) Failed to solve ⊢ Bool ≺ ?M::5 → Bool (line: 12: pos: 6) Type of argument 3 must be convertible to the expected type in the application of forall::@elim with arguments: ?M::5 (∀ n : ℕ, ?M::9 n ⇒ ?M::9 (n + 1)) ⇒ (∀ n : ℕ, ?M::9 n) Induction ◂ ?M::9 forall::intro (λ m : ℕ, Nat::add::zerol m ⋈ symm (Nat::add::zeror m))