import logic abbreviation subsets (P : Type) := P → Prop. section hypothesis A : Type. hypothesis r : A → subsets A. hypothesis i : subsets A → A. hypothesis retract {P : subsets A} {a : A} : r (i P) a = P a. definition delta (a:A) : Prop := ¬ (r a a). notation `δ` := delta. -- Crashes unifier! theorem false_aux : ¬ (δ (i delta)) := assume H : δ (i delta), have H' : r (i delta) (i delta), from eq.rec H (eq.symm retract), H H'. end