/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura In the standard library we cannot assume the univalence axiom. We say two types are equivalent if they are isomorphic. Two equivalent types have the same cardinality. -/ import data.sum data.nat open function structure equiv [class] (A B : Type) := (to_fun : A → B) (inv : B → A) (left_inv : left_inverse inv to_fun) (right_inv : right_inverse inv to_fun) namespace equiv infix `≃`:50 := equiv namespace ops attribute equiv.to_fun [coercion] definition inverse [reducible] {A B : Type} [h : A ≃ B] : B → A := λ b, @equiv.inv A B h b postfix `⁻¹` := inverse end ops protected definition refl [refl] (A : Type) : A ≃ A := mk (@id A) (@id A) (λ x, rfl) (λ x, rfl) protected definition symm [symm] {A B : Type} : A ≃ B → B ≃ A | (mk f g h₁ h₂) := mk g f h₂ h₁ protected definition trans [trans] {A B C : Type} : A ≃ B → B ≃ C → A ≃ C | (mk f₁ g₁ l₁ r₁) (mk f₂ g₂ l₂ r₂) := mk (f₂ ∘ f₁) (g₁ ∘ g₂) (show ∀ x, g₁ (g₂ (f₂ (f₁ x))) = x, by intros; rewrite [l₂, l₁]; reflexivity) (show ∀ x, f₂ (f₁ (g₁ (g₂ x))) = x, by intros; rewrite [r₁, r₂]; reflexivity) definition false_equiv_empty : empty ≃ false := mk (λ e, empty.rec _ e) (λ h, false.rec _ h) (λ e, empty.rec _ e) (λ h, false.rec _ h) definition arrow_congr [congr] {A₁ B₁ A₂ B₂ : Type} : A₁ ≃ A₂ → B₁ ≃ B₂ → (A₁ → B₁) ≃ (A₂ → B₂) | (mk f₁ g₁ l₁ r₁) (mk f₂ g₂ l₂ r₂) := mk (λ (h : A₁ → B₁) (a : A₂), f₂ (h (g₁ a))) (λ (h : A₂ → B₂) (a : A₁), g₂ (h (f₁ a))) (λ h, funext (λ a, by rewrite [l₁, l₂]; reflexivity)) (λ h, funext (λ a, by rewrite [r₁, r₂]; reflexivity)) section open unit definition arrow_unit_equiv_unit [simp] (A : Type) : (A → unit) ≃ unit := mk (λ f, star) (λ u, (λ f, star)) (λ f, funext (λ x, by cases (f x); reflexivity)) (λ u, by cases u; reflexivity) definition unit_arrow_equiv [simp] (A : Type) : (unit → A) ≃ A := mk (λ f, f star) (λ a, (λ u, a)) (λ f, funext (λ x, by cases x; reflexivity)) (λ u, rfl) definition empty_arrow_equiv_unit [simp] (A : Type) : (empty → A) ≃ unit := mk (λ f, star) (λ u, λ e, empty.rec _ e) (λ f, funext (λ x, empty.rec _ x)) (λ u, by cases u; reflexivity) definition false_arrow_equiv_unit [simp] (A : Type) : (false → A) ≃ unit := calc (false → A) ≃ (empty → A) : arrow_congr false_equiv_empty !equiv.refl ... ≃ unit : empty_arrow_equiv_unit end definition prod_congr [congr] {A₁ B₁ A₂ B₂ : Type} : A₁ ≃ A₂ → B₁ ≃ B₂ → (A₁ × B₁) ≃ (A₂ × B₂) | (mk f₁ g₁ l₁ r₁) (mk f₂ g₂ l₂ r₂) := mk (λ p, match p with (a₁, b₁) := (f₁ a₁, f₂ b₁) end) (λ p, match p with (a₂, b₂) := (g₁ a₂, g₂ b₂) end) (λ p, begin cases p, esimp, rewrite [l₁, l₂], reflexivity end) (λ p, begin cases p, esimp, rewrite [r₁, r₂], reflexivity end) definition prod_comm [simp] (A B : Type) : (A × B) ≃ (B × A) := mk (λ p, match p with (a, b) := (b, a) end) (λ p, match p with (b, a) := (a, b) end) (λ p, begin cases p, esimp end) (λ p, begin cases p, esimp end) definition prod_assoc [simp] (A B C : Type) : ((A × B) × C) ≃ (A × (B × C)) := mk (λ t, match t with ((a, b), c) := (a, (b, c)) end) (λ t, match t with (a, (b, c)) := ((a, b), c) end) (λ t, begin cases t with ab c, cases ab, esimp end) (λ t, begin cases t with a bc, cases bc, esimp end) section open unit prod.ops definition prod_unit_right [simp] (A : Type) : (A × unit) ≃ A := mk (λ p, p.1) (λ a, (a, star)) (λ p, begin cases p with a u, cases u, esimp end) (λ a, rfl) definition prod_unit_left [simp] (A : Type) : (unit × A) ≃ A := calc (unit × A) ≃ (A × unit) : prod_comm ... ≃ A : prod_unit_right definition prod_empty_right [simp] (A : Type) : (A × empty) ≃ empty := mk (λ p, empty.rec _ p.2) (λ e, empty.rec _ e) (λ p, empty.rec _ p.2) (λ e, empty.rec _ e) definition prod_empty_left [simp] (A : Type) : (empty × A) ≃ empty := calc (empty × A) ≃ (A × empty) : prod_comm ... ≃ empty : prod_empty_right end section open sum definition sum_congr [congr] {A₁ B₁ A₂ B₂ : Type} : A₁ ≃ A₂ → B₁ ≃ B₂ → (A₁ + B₁) ≃ (A₂ + B₂) | (mk f₁ g₁ l₁ r₁) (mk f₂ g₂ l₂ r₂) := mk (λ s, match s with inl a₁ := inl (f₁ a₁) | inr b₁ := inr (f₂ b₁) end) (λ s, match s with inl a₂ := inl (g₁ a₂) | inr b₂ := inr (g₂ b₂) end) (λ s, begin cases s, {esimp, rewrite l₁, reflexivity}, {esimp, rewrite l₂, reflexivity} end) (λ s, begin cases s, {esimp, rewrite r₁, reflexivity}, {esimp, rewrite r₂, reflexivity} end) open bool unit definition bool_equiv_unit_sum_unit : bool ≃ (unit + unit) := mk (λ b, match b with tt := inl star | ff := inr star end) (λ s, match s with inl star := tt | inr star := ff end) (λ b, begin cases b, esimp, esimp end) (λ s, begin cases s with u u, {cases u, esimp}, {cases u, esimp} end) definition sum_comm [simp] (A B : Type) : (A + B) ≃ (B + A) := mk (λ s, match s with inl a := inr a | inr b := inl b end) (λ s, match s with inl b := inr b | inr a := inl a end) (λ s, begin cases s, esimp, esimp end) (λ s, begin cases s, esimp, esimp end) definition sum_assoc [simp] (A B C : Type) : ((A + B) + C) ≃ (A + (B + C)) := mk (λ s, match s with inl (inl a) := inl a | inl (inr b) := inr (inl b) | inr c := inr (inr c) end) (λ s, match s with inl a := inl (inl a) | inr (inl b) := inl (inr b) | inr (inr c) := inr c end) (λ s, begin cases s with ab c, cases ab, repeat esimp end) (λ s, begin cases s with a bc, esimp, cases bc, repeat esimp end) definition sum_empty_right [simp] (A : Type) : (A + empty) ≃ A := mk (λ s, match s with inl a := a | inr e := empty.rec _ e end) (λ a, inl a) (λ s, begin cases s with a e, esimp, exact empty.rec _ e end) (λ a, rfl) definition sum_empty_left [simp] (A : Type) : (empty + A) ≃ A := calc (empty + A) ≃ (A + empty) : sum_comm ... ≃ A : sum_empty_right end section open prod.ops definition arrow_prod_equiv_prod_arrow (A B C : Type) : (C → A × B) ≃ ((C → A) × (C → B)) := mk (λ f, (λ c, (f c).1, λ c, (f c).2)) (λ p, λ c, (p.1 c, p.2 c)) (λ f, funext (λ c, begin esimp, cases f c, esimp end)) (λ p, begin cases p, esimp end) definition arrow_arrow_equiv_prod_arrow (A B C : Type) : (A → B → C) ≃ (A × B → C) := mk (λ f, λ p, f p.1 p.2) (λ f, λ a b, f (a, b)) (λ f, rfl) (λ f, funext (λ p, begin cases p, esimp end)) open sum definition sum_arrow_equiv_prod_arrow (A B C : Type) : ((A + B) → C) ≃ ((A → C) × (B → C)) := mk (λ f, (λ a, f (inl a), λ b, f (inr b))) (λ p, (λ s, match s with inl a := p.1 a | inr b := p.2 b end)) (λ f, funext (λ s, begin cases s, esimp, esimp end)) (λ p, begin cases p, esimp end) definition sum_prod_distrib (A B C : Type) : ((A + B) × C) ≃ ((A × C) + (B × C)) := mk (λ p, match p with (inl a, c) := inl (a, c) | (inr b, c) := inr (b, c) end) (λ s, match s with inl (a, c) := (inl a, c) | inr (b, c) := (inr b, c) end) (λ p, begin cases p with ab c, cases ab, repeat esimp end) (λ s, begin cases s with ac bc, cases ac, esimp, cases bc, esimp end) definition prod_sum_distrib (A B C : Type) : (A × (B + C)) ≃ ((A × B) + (A × C)) := calc (A × (B + C)) ≃ ((B + C) × A) : prod_comm ... ≃ ((B × A) + (C × A)) : sum_prod_distrib ... ≃ ((A × B) + (A × C)) : sum_congr !prod_comm !prod_comm definition bool_prod_equiv_sum (A : Type) : (bool × A) ≃ (A + A) := calc (bool × A) ≃ ((unit + unit) × A) : prod_congr bool_equiv_unit_sum_unit !equiv.refl ... ≃ (A × (unit + unit)) : prod_comm ... ≃ ((A × unit) + (A × unit)) : prod_sum_distrib ... ≃ (A + A) : sum_congr !prod_unit_right !prod_unit_right end section open sum nat unit prod.ops definition nat_equiv_nat_sum_unit : nat ≃ (nat + unit) := mk (λ n, match n with zero := inr star | succ a := inl a end) (λ s, match s with inl n := succ n | inr star := zero end) (λ n, begin cases n, repeat esimp end) (λ s, begin cases s with a u, esimp, {cases u, esimp} end) definition nat_sum_unit_equiv_nat [simp] : (nat + unit) ≃ nat := equiv.symm nat_equiv_nat_sum_unit definition nat_prod_nat_equiv_nat [simp] : (nat × nat) ≃ nat := mk (λ p, mkpair p.1 p.2) (λ n, unpair n) (λ p, begin cases p, apply unpair_mkpair end) (λ n, mkpair_unpair n) definition nat_sum_bool_equiv_nat [simp] : (nat + bool) ≃ nat := calc (nat + bool) ≃ (nat + (unit + unit)) : sum_congr !equiv.refl bool_equiv_unit_sum_unit ... ≃ ((nat + unit) + unit) : sum_assoc ... ≃ (nat + unit) : sum_congr nat_sum_unit_equiv_nat !equiv.refl ... ≃ nat : nat_sum_unit_equiv_nat open decidable definition nat_sum_nat_equiv_nat [simp] : (nat + nat) ≃ nat := mk (λ s, match s with inl n := 2*n | inr n := 2*n+1 end) (λ n, if even n then inl (n div 2) else inr ((n - 1) div 2)) (λ s, begin have two_gt_0 : 2 > zero, from dec_trivial, cases s, {esimp, rewrite [if_pos (even_two_mul _), mul_div_cancel_left _ two_gt_0]}, {esimp, rewrite [if_neg (not_even_two_mul_plus_one _), add_sub_cancel, mul_div_cancel_left _ two_gt_0]} end) (λ n, by_cases (λ h : even n, begin rewrite [if_pos h], esimp, rewrite [mul_div_cancel' (dvd_of_even h)] end) (λ h : ¬ even n, begin rewrite [if_neg h], esimp, cases n, {exact absurd even_zero h}, {rewrite [-add_one, add_sub_cancel, mul_div_cancel' (dvd_of_even (even_of_odd_succ (odd_of_not_even h)))]} end)) definition prod_equiv_of_equiv_nat {A : Type} : A ≃ nat → (A × A) ≃ A := take e, calc (A × A) ≃ (nat × nat) : prod_congr e e ... ≃ nat : nat_prod_nat_equiv_nat ... ≃ A : equiv.symm e end section open decidable definition decidable_eq_of_equiv {A B : Type} [h : decidable_eq A] : A ≃ B → decidable_eq B | (mk f g l r) := take b₁ b₂, match h (g b₁) (g b₂) with | inl he := inl (assert aux : f (g b₁) = f (g b₂), from congr_arg f he, begin rewrite *r at aux, exact aux end) | inr hn := inr (λ b₁eqb₂, by subst b₁eqb₂; exact absurd rfl hn) end end definition inhabited_of_equiv {A B : Type} [h : inhabited A] : A ≃ B → inhabited B | (mk f g l r) := inhabited.mk (f (inhabited.value h)) section open subtype override equiv.ops definition subtype_equiv_of_subtype {A B : Type} {p : A → Prop} : A ≃ B → {a : A | p a} ≃ {b : B | p (b⁻¹)} | (mk f g l r) := mk (λ s, match s with tag v h := tag (f v) (eq.rec_on (eq.symm (l v)) h) end) (λ s, match s with tag v h := tag (g v) (eq.rec_on (eq.symm (r v)) h) end) (λ s, begin cases s, esimp, congruence, rewrite l, reflexivity end) (λ s, begin cases s, esimp, congruence, rewrite r, reflexivity end) end end equiv