-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Jeremy Avigad, Jakob von Raumer -- Ported from Coq HoTT -- TODO: take a look at the Coq tricks import hott.path hott.equiv open path -- Funext -- ------ axiom funext {A : Type} {P : A → Type} (f g : Π x : A, P x) : IsEquiv (@apD10 A P f g) theorem funext_instance [instance] {A : Type} {P : A → Type} (f g : Π x : A, P x) : IsEquiv (@apD10 A P f g) := @funext A P f g definition path_forall {A : Type} {P : A → Type} (f g : Π x : A, P x) : f ∼ g → f ≈ g := IsEquiv.inv !apD10 definition path_forall2 {A B : Type} {P : A → B → Type} (f g : Π x y, P x y) : (Πx y, f x y ≈ g x y) → f ≈ g := λE, path_forall f g (λx, path_forall (f x) (g x) (E x))