-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura, Jeremy Avigad, Floris van Doorn import logic.inhabited logic.cast open inhabited eq.ops inductive sigma {A : Type} (B : A → Type) : Type := dpair : Πx : A, B x → sigma B notation `Σ` binders `,` r:(scoped P, sigma P) := r namespace sigma universe variables u v variables {A A' : Type.{u}} {B : A → Type.{v}} {B' : A' → Type.{v}} --without reducible tag, slice.composition_functor in algebra.category.constructions fails definition dpr1 [reducible] (p : Σ x, B x) : A := rec (λ a b, a) p definition dpr2 [reducible] (p : Σ x, B x) : B (dpr1 p) := rec (λ a b, b) p theorem dpr1_dpair (a : A) (b : B a) : dpr1 (dpair a b) = a := rfl theorem dpr2_dpair (a : A) (b : B a) : dpr2 (dpair a b) = b := rfl protected theorem destruct {P : sigma B → Prop} (p : sigma B) (H : ∀a b, P (dpair a b)) : P p := rec H p protected theorem eta (p : sigma B) : dpair (dpr1 p) (dpr2 p) = p := destruct p (take a b, rfl) theorem dpair_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) : dpair a₁ b₁ = dpair a₂ b₂ := dcongr_arg2 dpair H₁ H₂ theorem dpair_heq {a : A} {a' : A'} {b : B a} {b' : B' a'} (HB : B == B') (Ha : a == a') (Hb : b == b') : dpair a b == dpair a' b' := hcongr_arg4 @dpair (heq.type_eq Ha) HB Ha Hb protected theorem equal {p₁ p₂ : Σa : A, B a} : ∀(H₁ : dpr1 p₁ = dpr1 p₂) (H₂ : eq.rec_on H₁ (dpr2 p₁) = dpr2 p₂), p₁ = p₂ := destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, dpair_eq H₁ H₂)) protected theorem hequal {p : Σa : A, B a} {p' : Σa' : A', B' a'} (HB : B == B') : ∀(H₁ : dpr1 p == dpr1 p') (H₂ : dpr2 p == dpr2 p'), p == p' := destruct p (take a₁ b₁, destruct p' (take a₂ b₂ H₁ H₂, dpair_heq HB H₁ H₂)) protected definition is_inhabited [instance] (H₁ : inhabited A) (H₂ : inhabited (B (default A))) : inhabited (sigma B) := inhabited.destruct H₁ (λa, inhabited.destruct H₂ (λb, inhabited.mk (dpair (default A) b))) theorem eq_rec_dpair_commute {C : Πa, B a → Type} {a a' : A} (H : a = a') (b : B a) (c : C a b) : eq.rec_on H (dpair b c) = dpair (eq.rec_on H b) (eq.rec_on (dcongr_arg2 C H rfl) c) := eq.drec_on H (dpair_eq rfl (!eq.rec_on_id⁻¹)) variables {C : Πa, B a → Type} {D : Πa b, C a b → Type} definition dtrip (a : A) (b : B a) (c : C a b) := dpair a (dpair b c) definition dquad (a : A) (b : B a) (c : C a b) (d : D a b c) := dpair a (dpair b (dpair c d)) definition dpr1' (x : Σ a, B a) := dpr1 x definition dpr2' (x : Σ a b, C a b) := dpr1 (dpr2 x) definition dpr3 (x : Σ a b, C a b) := dpr2 (dpr2 x) definition dpr3' (x : Σ a b c, D a b c) := dpr1 (dpr2 (dpr2 x)) definition dpr4 (x : Σ a b c, D a b c) := dpr2 (dpr2 (dpr2 x)) theorem dtrip_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) (H₃ : cast (dcongr_arg2 C H₁ H₂) c₁ = c₂) : dtrip a₁ b₁ c₁ = dtrip a₂ b₂ c₂ := dcongr_arg3 dtrip H₁ H₂ H₃ theorem ndtrip_eq {A B : Type} {C : A → B → Type} {a₁ a₂ : A} {b₁ b₂ : B} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (H₁ : a₁ = a₂) (H₂ : b₁ = b₂) (H₃ : cast (congr_arg2 C H₁ H₂) c₁ = c₂) : dtrip a₁ b₁ c₁ = dtrip a₂ b₂ c₂ := hdcongr_arg3 dtrip H₁ (heq.from_eq H₂) H₃ theorem ndtrip_equal {A B : Type} {C : A → B → Type} {p₁ p₂ : Σa b, C a b} : ∀(H₁ : dpr1 p₁ = dpr1 p₂) (H₂ : dpr2' p₁ = dpr2' p₂) (H₃ : eq.rec_on (congr_arg2 C H₁ H₂) (dpr3 p₁) = dpr3 p₂), p₁ = p₂ := destruct p₁ (take a₁ q₁, destruct q₁ (take b₁ c₁, destruct p₂ (take a₂ q₂, destruct q₂ (take b₂ c₂ H₁ H₂ H₃, ndtrip_eq H₁ H₂ H₃)))) end sigma