-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura import .eq .quantifiers open eq.ops -- cast.lean -- ========= section universe variable u variables {A B : Type.{u}} definition cast (H : A = B) (a : A) : B := eq.rec a H theorem cast_refl (a : A) : cast (eq.refl A) a = a := rfl theorem cast_proof_irrel (H₁ H₂ : A = B) (a : A) : cast H₁ a = cast H₂ a := rfl theorem cast_eq (H : A = A) (a : A) : cast H a = a := rfl end inductive heq {A : Type} (a : A) : Π {B : Type}, B → Prop := refl : heq a a infixl `==`:50 := heq namespace heq universe variable u variables {A B C : Type.{u}} {a a' : A} {b b' : B} {c : C} theorem drec_on {C : Π {B : Type} (b : B), a == b → Type} (H₁ : a == b) (H₂ : C a (refl a)) : C b H₁ := rec (λ H₁ : a == a, show C a H₁, from H₂) H₁ H₁ theorem subst {P : ∀T : Type, T → Prop} (H₁ : a == b) (H₂ : P A a) : P B b := rec_on H₁ H₂ theorem symm (H : a == b) : b == a := subst H (refl a) theorem type_eq (H : a == b) : A = B := subst H (eq.refl A) theorem from_eq (H : a = a') : a == a' := eq.subst H (refl a) theorem trans (H₁ : a == b) (H₂ : b == c) : a == c := subst H₂ H₁ theorem trans_left (H₁ : a == b) (H₂ : b = b') : a == b' := trans H₁ (from_eq H₂) theorem trans_right (H₁ : a = a') (H₂ : a' == b) : a == b := trans (from_eq H₁) H₂ theorem to_cast_eq (H : a == b) : cast (type_eq H) a = b := drec_on H !cast_eq theorem to_eq (H : a == a') : a = a' := calc a = cast (eq.refl A) a : cast_eq ... = a' : to_cast_eq H theorem elim {D : Type} (H₁ : a == b) (H₂ : ∀ (Hab : A = B), cast Hab a = b → D) : D := H₂ (type_eq H₁) (to_cast_eq H₁) end heq calc_trans heq.trans calc_trans heq.trans_left calc_trans heq.trans_right calc_symm heq.symm section universe variables u v variables {A A' B C : Type.{u}} {P P' : A → Type.{v}} {a a' : A} {b : B} theorem eq_rec_heq (H : a = a') (p : P a) : eq.rec_on H p == p := eq.drec_on H !heq.refl -- should H₁ be explicit (useful in e.g. hproof_irrel) theorem eq_rec_to_heq {H₁ : a = a'} {p : P a} {p' : P a'} (H₂ : eq.rec_on H₁ p = p') : p == p' := calc p == eq.rec_on H₁ p : heq.symm (eq_rec_heq H₁ p) ... = p' : H₂ theorem cast_to_heq {H₁ : A = B} (H₂ : cast H₁ a = b) : a == b := eq_rec_to_heq H₂ theorem hproof_irrel {a b : Prop} (H : a = b) (H₁ : a) (H₂ : b) : H₁ == H₂ := eq_rec_to_heq (proof_irrel (cast H H₁) H₂) theorem heq.true_elim {a : Prop} (H : a == true) : a := eq_true_elim (heq.to_eq H) --TODO: generalize to eq.rec. This is a special case of rec_on_compose in eq.lean theorem cast_trans (Hab : A = B) (Hbc : B = C) (a : A) : cast Hbc (cast Hab a) = cast (Hab ⬝ Hbc) a := heq.to_eq (calc cast Hbc (cast Hab a) == cast Hab a : eq_rec_heq Hbc (cast Hab a) ... == a : eq_rec_heq Hab a ... == cast (Hab ⬝ Hbc) a : heq.symm (eq_rec_heq (Hab ⬝ Hbc) a)) theorem pi_eq (H : P = P') : (Π x, P x) = (Π x, P' x) := H ▸ (eq.refl (Π x, P x)) theorem hcongr_arg (f : Πx, P x) {a b : A} (H : a = b) : f a == f b := have e1 : ∀ (H : P a = P a), cast H (f a) = f a, from assume H, cast_eq H (f a), have e2 : ∀ (H : P a = P b), cast H (f a) = f b, from H ▸ e1, have e3 : cast (congr_arg P H) (f a) = f b, from e2 (congr_arg P H), eq_rec_to_heq e3 -- TODO: generalize to eq_rec theorem cast_app' (H : P = P') (f : Π x, P x) (a : A) : cast (pi_eq H) f a == f a := have H₁ : ∀ (H : (Π x, P x) = (Π x, P x)), cast H f a == f a, from assume H, heq.from_eq (congr_fun (cast_eq H f) a), have H₂ : ∀ (H : (Π x, P x) = (Π x, P' x)), cast H f a == f a, from H ▸ H₁, H₂ (pi_eq H) -- TODO: generalize to eq_rec theorem cast_pull (H : P = P') (f : Π x, P x) (a : A) : cast (pi_eq H) f a = cast (congr_fun H a) (f a) := heq.to_eq (calc cast (pi_eq H) f a == f a : cast_app' H f a ... == cast (congr_fun H a) (f a) : heq.symm (eq_rec_heq (congr_fun H a) (f a))) theorem hcongr_fun' {f : Π x, P x} {f' : Π x, P' x} (a : A) (H₁ : f == f') (H₂ : P = P') : f a == f' a := heq.elim H₁ (λ (Ht : (Π x, P x) = (Π x, P' x)) (Hw : cast Ht f = f'), calc f a == cast (pi_eq H₂) f a : heq.symm (cast_app' H₂ f a) ... = cast Ht f a : eq.refl (cast Ht f a) ... = f' a : congr_fun Hw a) theorem hcongr' {P' : A' → Type} {f : Π a, P a} {f' : Π a', P' a'} {a : A} {a' : A'} (Hf : f == f') (HP : P == P') (Ha : a == a') : f a == f' a' := have H1 : ∀ (B P' : A → Type) (f : Π x, P x) (f' : Π x, P' x), f == f' → (λx, P x) == (λx, P' x) → f a == f' a, from take P P' f f' Hf HB, hcongr_fun' a Hf (heq.to_eq HB), have H2 : ∀ (B : A → Type) (P' : A' → Type) (f : Π x, P x) (f' : Π x, P' x), f == f' → (λx, P x) == (λx, P' x) → f a == f' a', from heq.subst Ha H1, H2 P P' f f' Hf HP end section variables {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type} {E : Πa b c, D a b c → Type} {F : Type} variables {a a' : A} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'} {d : D a b c} {d' : D a' b' c'} theorem hcongr_arg2 (f : Πa b, C a b) (Ha : a = a') (Hb : b == b') : f a b == f a' b' := hcongr' (hcongr_arg f Ha) (hcongr_arg C Ha) Hb theorem hcongr_arg3 (f : Πa b c, D a b c) (Ha : a = a') (Hb : b == b') (Hc : c == c') : f a b c == f a' b' c' := hcongr' (hcongr_arg2 f Ha Hb) (hcongr_arg2 D Ha Hb) Hc theorem hcongr_arg4 (f : Πa b c d, E a b c d) (Ha : a = a') (Hb : b == b') (Hc : c == c') (Hd : d == d') : f a b c d == f a' b' c' d' := hcongr' (hcongr_arg3 f Ha Hb Hc) (hcongr_arg3 E Ha Hb Hc) Hd theorem dcongr_arg2 (f : Πa, B a → F) (Ha : a = a') (Hb : eq.rec_on Ha b = b') : f a b = f a' b' := heq.to_eq (hcongr_arg2 f Ha (eq_rec_to_heq Hb)) theorem dcongr_arg3 (f : Πa b, C a b → F) (Ha : a = a') (Hb : eq.rec_on Ha b = b') (Hc : cast (dcongr_arg2 C Ha Hb) c = c') : f a b c = f a' b' c' := heq.to_eq (hcongr_arg3 f Ha (eq_rec_to_heq Hb) (eq_rec_to_heq Hc)) theorem dcongr_arg4 (f : Πa b c, D a b c → F) (Ha : a = a') (Hb : eq.rec_on Ha b = b') (Hc : cast (dcongr_arg2 C Ha Hb) c = c') (Hd : cast (dcongr_arg3 D Ha Hb Hc) d = d') : f a b c d = f a' b' c' d' := heq.to_eq (hcongr_arg4 f Ha (eq_rec_to_heq Hb) (eq_rec_to_heq Hc) (eq_rec_to_heq Hd)) --mixed versions (we want them for example if C a' b' is a subsingleton, like a proposition. Then proving eq is easier than proving heq) theorem hdcongr_arg3 (f : Πa b, C a b → F) (Ha : a = a') (Hb : b == b') (Hc : cast (heq.to_eq (hcongr_arg2 C Ha Hb)) c = c') : f a b c = f a' b' c' := heq.to_eq (hcongr_arg3 f Ha Hb (eq_rec_to_heq Hc)) theorem hhdcongr_arg4 (f : Πa b c, D a b c → F) (Ha : a = a') (Hb : b == b') (Hc : c == c') (Hd : cast (dcongr_arg3 D Ha (!eq.rec_on_irrel_arg ⬝ heq.to_cast_eq Hb) (!eq.rec_on_irrel_arg ⬝ heq.to_cast_eq Hc)) d = d') : f a b c d = f a' b' c' d' := heq.to_eq (hcongr_arg4 f Ha Hb Hc (eq_rec_to_heq Hd)) theorem hddcongr_arg4 (f : Πa b c, D a b c → F) (Ha : a = a') (Hb : b == b') (Hc : cast (heq.to_eq (hcongr_arg2 C Ha Hb)) c = c') (Hd : cast (hdcongr_arg3 D Ha Hb Hc) d = d') : f a b c d = f a' b' c' d' := heq.to_eq (hcongr_arg4 f Ha Hb (eq_rec_to_heq Hc) (eq_rec_to_heq Hd)) --Is a reasonable version of "hcongr2" provable without pi_ext and funext? --It looks like you need some ugly extra conditions -- theorem hcongr2' {A A' : Type} {B : A → Type} {B' : A' → Type} {C : Πa, B a → Type} {C' : Πa, B' a → Type} -- {f : Π a b, C a b} {f' : Π a' b', C' a' b'} {a : A} {a' : A'} {b : B a} {b' : B' a'} -- (HBB' : B == B') (HCC' : C == C') -- (Hff' : f == f') (Haa' : a == a') (Hbb' : b == b') : f a b == f' a' b' := -- hcongr' (hcongr' Hff' (sorry) Haa') (hcongr' HCC' (sorry) Haa') Hbb' end