-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Jeremy Avigad import data.unit data.bool data.nat import data.prod data.sum data.sigma open unit bool nat prod sum sigma inductive fibrant (T : Type) : Type := fibrant_mk : fibrant T namespace fibrant axiom unit_fibrant : fibrant unit axiom nat_fibrant : fibrant nat axiom bool_fibrant : fibrant bool axiom sum_fibrant {A B : Type} (C1 : fibrant A) (C2 : fibrant B) : fibrant (A ⊎ B) axiom prod_fibrant {A B : Type} (C1 : fibrant A) (C2 : fibrant B) : fibrant (A × B) axiom sigma_fibrant {A : Type} {B : A → Type} (C1 : fibrant A) (C2 : Πx : A, fibrant (B x)) : fibrant (Σx : A, B x) axiom pi_fibrant {A : Type} {B : A → Type} (C1 : fibrant A) (C2 : Πx : A, fibrant (B x)) : fibrant (Πx : A, B x) instance unit_fibrant instance nat_fibrant instance bool_fibrant instance sum_fibrant instance prod_fibrant instance sigma_fibrant instance pi_fibrant theorem test_fibrant : fibrant (nat × (nat ⊎ nat)) := _ end fibrant