-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Leonardo de Moura, Jeremy Avigad import general_notation .eq -- and -- --- inductive and (a b : Prop) : Prop := intro : a → b → and a b infixr `/\` := and infixr `∧` := and namespace and theorem elim {a b c : Prop} (H₁ : a ∧ b) (H₂ : a → b → c) : c := rec H₂ H₁ theorem elim_left {a b : Prop} (H : a ∧ b) : a := rec (λa b, a) H theorem elim_right {a b : Prop} (H : a ∧ b) : b := rec (λa b, b) H theorem swap {a b : Prop} (H : a ∧ b) : b ∧ a := intro (elim_right H) (elim_left H) theorem not_left {a : Prop} (b : Prop) (Hna : ¬a) : ¬(a ∧ b) := assume H : a ∧ b, absurd (elim_left H) Hna theorem not_right (a : Prop) {b : Prop} (Hnb : ¬b) : ¬(a ∧ b) := assume H : a ∧ b, absurd (elim_right H) Hnb theorem imp_and {a b c d : Prop} (H₁ : a ∧ b) (H₂ : a → c) (H₃ : b → d) : c ∧ d := elim H₁ (assume Ha : a, assume Hb : b, intro (H₂ Ha) (H₃ Hb)) theorem imp_left {a b c : Prop} (H₁ : a ∧ c) (H : a → b) : b ∧ c := elim H₁ (assume Ha : a, assume Hc : c, intro (H Ha) Hc) theorem imp_right {a b c : Prop} (H₁ : c ∧ a) (H : a → b) : c ∧ b := elim H₁ (assume Hc : c, assume Ha : a, intro Hc (H Ha)) end and -- or -- -- inductive or (a b : Prop) : Prop := intro_left : a → or a b, intro_right : b → or a b infixr `\/` := or infixr `∨` := or namespace or theorem inl {a b : Prop} (Ha : a) : a ∨ b := intro_left b Ha theorem inr {a b : Prop} (Hb : b) : a ∨ b := intro_right a Hb theorem elim {a b c : Prop} (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → c) : c := rec H₂ H₃ H₁ theorem elim3 {a b c d : Prop} (H : a ∨ b ∨ c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d := elim H Ha (assume H₂, elim H₂ Hb Hc) theorem resolve_right {a b : Prop} (H₁ : a ∨ b) (H₂ : ¬a) : b := elim H₁ (assume Ha, absurd Ha H₂) (assume Hb, Hb) theorem resolve_left {a b : Prop} (H₁ : a ∨ b) (H₂ : ¬b) : a := elim H₁ (assume Ha, Ha) (assume Hb, absurd Hb H₂) theorem swap {a b : Prop} (H : a ∨ b) : b ∨ a := elim H (assume Ha, inr Ha) (assume Hb, inl Hb) theorem not_intro {a b : Prop} (Hna : ¬a) (Hnb : ¬b) : ¬(a ∨ b) := assume H : a ∨ b, elim H (assume Ha, absurd Ha Hna) (assume Hb, absurd Hb Hnb) theorem imp_or {a b c d : Prop} (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → d) : c ∨ d := elim H₁ (assume Ha : a, inl (H₂ Ha)) (assume Hb : b, inr (H₃ Hb)) theorem imp_or_left {a b c : Prop} (H₁ : a ∨ c) (H : a → b) : b ∨ c := elim H₁ (assume H₂ : a, inl (H H₂)) (assume H₂ : c, inr H₂) theorem imp_or_right {a b c : Prop} (H₁ : c ∨ a) (H : a → b) : c ∨ b := elim H₁ (assume H₂ : c, inl H₂) (assume H₂ : a, inr (H H₂)) end or theorem not_not_em {p : Prop} : ¬¬(p ∨ ¬p) := assume not_em : ¬(p ∨ ¬p), have Hnp : ¬p, from assume Hp : p, absurd (or.inl Hp) not_em, absurd (or.inr Hnp) not_em -- iff -- --- definition iff (a b : Prop) := (a → b) ∧ (b → a) infix `<->` := iff infix `↔` := iff namespace iff theorem def {a b : Prop} : (a ↔ b) = ((a → b) ∧ (b → a)) := rfl theorem intro {a b : Prop} (H₁ : a → b) (H₂ : b → a) : a ↔ b := and.intro H₁ H₂ theorem elim {a b c : Prop} (H₁ : (a → b) → (b → a) → c) (H₂ : a ↔ b) : c := and.rec H₁ H₂ theorem elim_left {a b : Prop} (H : a ↔ b) : a → b := elim (assume H₁ H₂, H₁) H abbreviation mp := @elim_left theorem elim_right {a b : Prop} (H : a ↔ b) : b → a := elim (assume H₁ H₂, H₂) H theorem flip_sign {a b : Prop} (H₁ : a ↔ b) : ¬a ↔ ¬b := intro (assume Hna, mt (elim_right H₁) Hna) (assume Hnb, mt (elim_left H₁) Hnb) theorem refl (a : Prop) : a ↔ a := intro (assume H, H) (assume H, H) theorem rfl {a : Prop} : a ↔ a := refl a theorem trans {a b c : Prop} (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c := intro (assume Ha, elim_left H₂ (elim_left H₁ Ha)) (assume Hc, elim_right H₁ (elim_right H₂ Hc)) theorem symm {a b : Prop} (H : a ↔ b) : b ↔ a := intro (assume Hb, elim_right H Hb) (assume Ha, elim_left H Ha) theorem true_elim {a : Prop} (H : a ↔ true) : a := mp (symm H) trivial theorem false_elim {a : Prop} (H : a ↔ false) : ¬a := assume Ha : a, mp H Ha end iff calc_refl iff.refl calc_trans iff.trans open eq_ops theorem eq_to_iff {a b : Prop} (H : a = b) : a ↔ b := iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb) -- comm and assoc for and / or -- --------------------------- namespace and theorem comm {a b : Prop} : a ∧ b ↔ b ∧ a := iff.intro (λH, swap H) (λH, swap H) theorem assoc {a b c : Prop} : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) := iff.intro (assume H, intro (elim_left (elim_left H)) (intro (elim_right (elim_left H)) (elim_right H))) (assume H, intro (intro (elim_left H) (elim_left (elim_right H))) (elim_right (elim_right H))) end and namespace or theorem comm {a b : Prop} : a ∨ b ↔ b ∨ a := iff.intro (λH, swap H) (λH, swap H) theorem assoc {a b c : Prop} : (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) := iff.intro (assume H, elim H (assume H₁, elim H₁ (assume Ha, inl Ha) (assume Hb, inr (inl Hb))) (assume Hc, inr (inr Hc))) (assume H, elim H (assume Ha, (inl (inl Ha))) (assume H₁, elim H₁ (assume Hb, inl (inr Hb)) (assume Hc, inr Hc))) end or