/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Johannes Hölzl Galois connections - order theoretic adjoints. -/ import standard open classical eq.ops algebra set function complete_lattice /- Move to set? -/ definition kern_image {X Y : Type} (f : X → Y) (S : set X) : set Y := {y | ∀x, f x = y → x ∈ S } /- Order theoretic definitions -/ /- TODO: move to order? -/ section order variables {A B : Type} {S : set A} {a a' : A} {b b' : B} {f : A → B} [weak_order A] [weak_order B] definition increasing (f : A → A) := ∀⦃a⦄, a ≤ f a definition decreasing (f : A → A) := ∀⦃a⦄, f a ≤ a definition upper_bounds (S : set A) : set A := { x | ∀₀ s ∈ S, s ≤ x } definition lower_bounds (S : set A) : set A := { x | ∀₀ s ∈ S, x ≤ s } definition is_least (S : set A) (a : A) := a ∈ S ∧ a ∈ lower_bounds S definition is_greatest (S : set A) (a : A) := a ∈ S ∧ a ∈ upper_bounds S definition monotone (f : A → B) := ∀⦃a b⦄, a ≤ b → f a ≤ f b lemma eq_of_is_least_of_is_least (Ha : is_least S a) (Hb : is_least S a') : a = a' := le.antisymm begin apply (and.elim_right Ha), apply (and.elim_left Hb) end begin apply (and.elim_right Hb), apply (and.elim_left Ha) end lemma is_least_iff_eq_of_is_least (Ha : is_least S a) : is_least S a' ↔ a = a' := iff.intro (eq_of_is_least_of_is_least Ha) begin intro H, cases H, apply Ha end lemma eq_of_is_greatest_of_is_greatest (Ha : is_greatest S a) (Hb : is_greatest S a') : a = a' := le.antisymm begin apply (and.elim_right Hb), apply (and.elim_left Ha) end begin apply (and.elim_right Ha), apply (and.elim_left Hb) end lemma is_greatest_iff_eq_of_is_greatest (Ha : is_greatest S a) : is_greatest S a' ↔ a = a' := iff.intro (eq_of_is_greatest_of_is_greatest Ha) begin intro H, cases H, apply Ha end definition is_lub (S : set A) := is_least (upper_bounds S) definition is_glb (S : set A) := is_greatest (lower_bounds S) lemma eq_of_is_lub_of_is_lub : is_lub S a → is_lub S a' → a = a' := !eq_of_is_least_of_is_least lemma is_lub_iff_eq_of_is_lub : is_lub S a → (is_lub S a' ↔ a = a') := !is_least_iff_eq_of_is_least lemma eq_of_is_glb_of_is_glb : is_glb S a → is_glb S a' → a = a' := !eq_of_is_greatest_of_is_greatest lemma is_glb_iff_eq_of_is_glb : is_glb S a → (is_glb S a' ↔ a = a') := !is_greatest_iff_eq_of_is_greatest lemma mem_upper_bounds_image (Hf : monotone f) (Ha : a ∈ upper_bounds S) : f a ∈ upper_bounds (f ' S) := bounded_forall_image_of_bounded_forall (take x H, Hf (Ha `x ∈ S`)) lemma mem_lower_bounds_image (Hf : monotone f) (Ha : a ∈ lower_bounds S) : f a ∈ lower_bounds (f ' S) := bounded_forall_image_of_bounded_forall (take x H, Hf (Ha `x ∈ S`)) end order definition galois_connection {A B : Type} [weak_order A] [weak_order B] (l : A → B) (u : B → A) := ∀{a b}, l a ≤ b ↔ a ≤ u b namespace galois_connection section parameters {A B : Type} [weak_order A] [weak_order B] (l : A → B) (u : B → A) lemma monotone_intro (Mu : monotone u) (Ml : monotone l) (Iul : increasing (u ∘ l)) (Dlu : decreasing (l ∘ u)) : galois_connection l u := begin intros a b, apply iff.intro, { intro H, apply le.trans, apply Iul, apply Mu, assumption }, { intro H, apply le.trans, apply Ml, assumption, apply Dlu } end parameter (gc : galois_connection l u) include gc lemma l_le {a : A} {b : B} : a ≤ u b → l a ≤ b := and.elim_right !gc lemma le_u {a : A} {b : B} : l a ≤ b → a ≤ u b := and.elim_left !gc lemma increasing_u_l : increasing (u ∘ l) := take a, le_u !le.refl lemma decreasing_l_u : decreasing (l ∘ u) := take a, l_le !le.refl lemma monotone_u : monotone u := take a b H, le_u (le.trans !decreasing_l_u H) lemma monotone_l : monotone l := take a b H, l_le (le.trans H !increasing_u_l) lemma u_l_u_eq_u : u ∘ l ∘ u = u := funext (take x, le.antisymm (monotone_u !decreasing_l_u) !increasing_u_l) lemma l_u_l_eq_l : l ∘ u ∘ l = l := funext (take x, le.antisymm !decreasing_l_u (monotone_l !increasing_u_l)) lemma u_mem_upper_bounds {S : set A} {b : B} (H : b ∈ upper_bounds (l ' S)) : u b ∈ upper_bounds S := take c, suppose c ∈ S, le_u (H (!mem_image_of_mem `c ∈ S`)) lemma l_mem_lower_bounds {S : set B} {a : A} (H : a ∈ lower_bounds (u ' S)) : l a ∈ lower_bounds S := take c, suppose c ∈ S, l_le (H (!mem_image_of_mem `c ∈ S`)) lemma is_lub_l_image {S : set A} {a : A} (H : is_lub S a) : is_lub (l ' S) (l a) := and.intro (mem_upper_bounds_image monotone_l (and.elim_left `is_lub S a`)) (take b Hb, l_le (and.elim_right `is_lub S a` _ (u_mem_upper_bounds Hb))) lemma is_glb_u_image {S : set B} {b : B} (H : is_glb S b) : is_glb (u ' S) (u b) := and.intro (mem_lower_bounds_image monotone_u (and.elim_left `is_glb S b`)) (take a Ha, le_u (and.elim_right `is_glb S b` _ (l_mem_lower_bounds Ha))) lemma is_glb_l {a : A} : is_glb { b | a ≤ u b } (l a) := begin apply and.intro, { intro b, apply l_le }, { intro b H, apply H, apply increasing_u_l } end lemma is_lub_u {b : B} : is_lub { a | l a ≤ b } (u b) := begin apply and.intro, { intro a, apply le_u }, { intro a H, apply H, apply decreasing_l_u } end end /- Constructing Galois connections -/ protected lemma id {A : Type} [weak_order A] : @galois_connection A A _ _ id id := take a b, iff.intro (λx, x) (λx, x) protected lemma dual {A B : Type} [woA : weak_order A] [woB : weak_order B] (l : A → B) (u : B → A) (gc : galois_connection l u) : @galois_connection B A (weak_order_dual woB) (weak_order_dual woA) u l := take a b, begin apply iff.symm, rewrite le_dual_eq_le, rewrite le_dual_eq_le, exact gc, end protected lemma compose {A B C : Type} [weak_order A] [weak_order B] [weak_order C] (l1 : A → B) (u1 : B → A) (l2 : B → C) (u2 : C → B) (gc1 : galois_connection l1 u1) (gc2 : galois_connection l2 u2) : galois_connection (l2 ∘ l1) (u1 ∘ u2) := by intros; rewrite gc2; rewrite gc1 section variables {A B : Type} {f : A → B} protected lemma image_preimage : galois_connection (image f) (preimage f) := @image_subset_iff A B f protected lemma preimage_kern_image : galois_connection (preimage f) (kern_image f) := begin intros X Y, apply iff.intro, all_goals (intro H x Hx), { intro x' eq, apply H, cases eq, exact Hx }, { apply H, esimp [preimage, mem, set_of] at Hx, exact Hx, -- TODO: why is esimp necessary? exact rfl } end end end galois_connection /- Bounds on complete lattices -/ /- TODO: move to complete lattices? -/ section variables {A : Type} (S : set A) {a b : A} [complete_lattice A] lemma is_lub_sup : is_lub '{a, b} (sup a b) := and.intro begin xrewrite [+bounded_forall_insert_iff, bounded_forall_empty_iff, and_true], exact (and.intro !le_sup_left !le_sup_right) end begin intro x Hx, xrewrite [+bounded_forall_insert_iff at Hx, bounded_forall_empty_iff at Hx, and_true at Hx], apply sup_le, apply (and.elim_left Hx), apply (and.elim_right Hx), end lemma is_lub_Sup : is_lub S (⨆S) := and.intro (take x, le_Sup) (take x, Sup_le) lemma is_lub_iff_Sup_eq {a : A} : is_lub S a ↔ (⨆S) = a := !is_lub_iff_eq_of_is_lub !is_lub_Sup lemma is_glb_Inf : is_glb S (⨅S) := and.intro (take a, Inf_le) (take a, le_Inf) lemma is_glb_iff_Inf_eq : is_glb S a ↔ (⨅S) = a := !is_glb_iff_eq_of_is_glb !is_glb_Inf end