-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura import logic.eq inductive heq {A : Type} (a : A) : Π {B : Type}, B → Prop := refl : heq a a infixl `==`:50 := heq namespace heq universe variable u variables {A B C : Type.{u}} {a a' : A} {b b' : B} {c : C} theorem drec_on {C : Π {B : Type} (b : B), a == b → Type} (H₁ : a == b) (H₂ : C a (refl a)) : C b H₁ := rec (λ H₁ : a == a, show C a H₁, from H₂) H₁ H₁ theorem subst {P : ∀T : Type, T → Prop} (H₁ : a == b) (H₂ : P A a) : P B b := rec_on H₁ H₂ theorem symm (H : a == b) : b == a := subst H (refl a) theorem type_eq (H : a == b) : A = B := subst H (eq.refl A) theorem from_eq (H : a = a') : a == a' := eq.subst H (refl a) theorem to_eq (H : a == a') : a = a' := have H₁ : ∀ (Ht : A = A), eq.rec_on Ht a = a, from take Ht, eq.refl (eq.rec_on Ht a), have H₂ : ∀ (Ht : A = A), eq.rec_on Ht a = a', from heq.rec_on H H₁, H₂ (type_eq H) theorem trans (H₁ : a == b) (H₂ : b == c) : a == c := subst H₂ H₁ theorem trans_left (H₁ : a == b) (H₂ : b = b') : a == b' := trans H₁ (from_eq H₂) theorem trans_right (H₁ : a = a') (H₂ : a' == b) : a == b := trans (from_eq H₁) H₂ theorem true_elim {a : Prop} (H : a == true) : a := eq_true_elim (heq.to_eq H) end heq calc_trans heq.trans calc_trans heq.trans_left calc_trans heq.trans_right calc_symm heq.symm