/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: init.logic Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn -/ prelude import init.datatypes init.reserved_notation /- implication -/ definition trivial := true.intro definition not (a : Prop) := a → false prefix `¬` := not definition absurd {a : Prop} {b : Type} (H1 : a) (H2 : ¬a) : b := false.rec b (H2 H1) /- not -/ theorem not_false : ¬false := assume H : false, H /- eq -/ notation a = b := eq a b definition rfl {A : Type} {a : A} := eq.refl a -- proof irrelevance is built in theorem proof_irrel {a : Prop} (H₁ H₂ : a) : H₁ = H₂ := rfl namespace eq variables {A : Type} variables {a b c a': A} theorem subst {P : A → Prop} (H₁ : a = b) (H₂ : P a) : P b := eq.rec H₂ H₁ theorem trans (H₁ : a = b) (H₂ : b = c) : a = c := subst H₂ H₁ definition symm (H : a = b) : b = a := eq.rec (refl a) H namespace ops notation H `⁻¹` := symm H --input with \sy or \-1 or \inv notation H1 ⬝ H2 := trans H1 H2 notation H1 ▸ H2 := subst H1 H2 end ops end eq section variable {p : Prop} open eq.ops theorem of_eq_true (H : p = true) : p := H⁻¹ ▸ trivial theorem not_of_eq_false (H : p = false) : ¬p := assume Hp, H ▸ Hp end calc_subst eq.subst calc_refl eq.refl calc_trans eq.trans calc_symm eq.symm /- ne -/ definition ne {A : Type} (a b : A) := ¬(a = b) notation a ≠ b := ne a b namespace ne open eq.ops variable {A : Type} variables {a b : A} theorem intro : (a = b → false) → a ≠ b := assume H, H theorem elim : a ≠ b → a = b → false := assume H₁ H₂, H₁ H₂ theorem irrefl : a ≠ a → false := assume H, H rfl theorem symm : a ≠ b → b ≠ a := assume (H : a ≠ b) (H₁ : b = a), H (H₁⁻¹) end ne section open eq.ops variables {A : Type} {a b c : A} theorem false.of_ne : a ≠ a → false := assume H, H rfl theorem ne.of_eq_of_ne : a = b → b ≠ c → a ≠ c := assume H₁ H₂, H₁⁻¹ ▸ H₂ theorem ne.of_ne_of_eq : a ≠ b → b = c → a ≠ c := assume H₁ H₂, H₂ ▸ H₁ end calc_trans ne.of_eq_of_ne calc_trans ne.of_ne_of_eq infixl `==`:50 := heq namespace heq universe variable u variables {A B C : Type.{u}} {a a' : A} {b b' : B} {c : C} definition to_eq (H : a == a') : a = a' := have H₁ : ∀ (Ht : A = A), eq.rec_on Ht a = a, from λ Ht, eq.refl (eq.rec_on Ht a), heq.rec_on H H₁ (eq.refl A) definition elim {A : Type} {a : A} {P : A → Type} {b : A} (H₁ : a == b) (H₂ : P a) : P b := eq.rec_on (to_eq H₁) H₂ theorem subst {P : ∀T : Type, T → Prop} (H₁ : a == b) (H₂ : P A a) : P B b := heq.rec_on H₁ H₂ theorem symm (H : a == b) : b == a := heq.rec_on H (refl a) theorem of_eq (H : a = a') : a == a' := eq.subst H (refl a) theorem trans (H₁ : a == b) (H₂ : b == c) : a == c := subst H₂ H₁ theorem of_heq_of_eq (H₁ : a == b) (H₂ : b = b') : a == b' := trans H₁ (of_eq H₂) theorem of_eq_of_heq (H₁ : a = a') (H₂ : a' == b) : a == b := trans (of_eq H₁) H₂ end heq theorem of_heq_true {a : Prop} (H : a == true) : a := of_eq_true (heq.to_eq H) calc_trans heq.trans calc_trans heq.of_heq_of_eq calc_trans heq.of_eq_of_heq calc_symm heq.symm /- and -/ notation a /\ b := and a b notation a ∧ b := and a b variables {a b c d : Prop} theorem and.elim (H₁ : a ∧ b) (H₂ : a → b → c) : c := and.rec H₂ H₁ /- or -/ notation a `\/` b := or a b notation a ∨ b := or a b namespace or theorem elim (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → c) : c := or.rec H₂ H₃ H₁ end or /- iff -/ definition iff (a b : Prop) := (a → b) ∧ (b → a) notation a <-> b := iff a b notation a ↔ b := iff a b namespace iff definition intro (H₁ : a → b) (H₂ : b → a) : a ↔ b := and.intro H₁ H₂ definition elim (H₁ : (a → b) → (b → a) → c) (H₂ : a ↔ b) : c := and.rec H₁ H₂ definition elim_left (H : a ↔ b) : a → b := elim (assume H₁ H₂, H₁) H definition mp := @elim_left definition elim_right (H : a ↔ b) : b → a := elim (assume H₁ H₂, H₂) H definition mp' := @elim_right definition refl (a : Prop) : a ↔ a := intro (assume H, H) (assume H, H) definition rfl {a : Prop} : a ↔ a := refl a theorem trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c := intro (assume Ha, elim_left H₂ (elim_left H₁ Ha)) (assume Hc, elim_right H₁ (elim_right H₂ Hc)) theorem symm (H : a ↔ b) : b ↔ a := intro (assume Hb, elim_right H Hb) (assume Ha, elim_left H Ha) open eq.ops theorem of_eq {a b : Prop} (H : a = b) : a ↔ b := iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb) end iff definition not_iff_not_of_iff (H₁ : a ↔ b) : ¬a ↔ ¬b := iff.intro (assume (Hna : ¬ a) (Hb : b), absurd (iff.elim_right H₁ Hb) Hna) (assume (Hnb : ¬ b) (Ha : a), absurd (iff.elim_left H₁ Ha) Hnb) theorem of_iff_true (H : a ↔ true) : a := iff.mp (iff.symm H) trivial theorem not_of_iff_false (H : a ↔ false) : ¬a := assume Ha : a, iff.mp H Ha theorem iff_of_eq_of_iff (H₁ : a = b) (H₂ : b ↔ c) : a ↔ c := H₁⁻¹ ▸ H₂ theorem iff_of_iff_of_eq (H₁ : a ↔ b) (H₂ : b = c) : a ↔ c := H₂ ▸ H₁ calc_refl iff.refl calc_trans iff.trans calc_trans iff_of_eq_of_iff calc_trans iff_of_iff_of_eq inductive Exists {A : Type} (P : A → Prop) : Prop := intro : ∀ (a : A), P a → Exists P definition exists.intro := @Exists.intro notation `exists` binders `,` r:(scoped P, Exists P) := r notation `∃` binders `,` r:(scoped P, Exists P) := r theorem exists.elim {A : Type} {p : A → Prop} {B : Prop} (H1 : ∃x, p x) (H2 : ∀ (a : A) (H : p a), B) : B := Exists.rec H2 H1 /- decidable -/ inductive decidable [class] (p : Prop) : Type := | inl : p → decidable p | inr : ¬p → decidable p definition decidable_true [instance] : decidable true := decidable.inl trivial definition decidable_false [instance] : decidable false := decidable.inr not_false namespace decidable variables {p q : Prop} definition rec_on_true [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : p) (H4 : H1 H3) : decidable.rec_on H H1 H2 := decidable.rec_on H (λh, H4) (λh, !false.rec (h H3)) definition rec_on_false [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : ¬p) (H4 : H2 H3) : decidable.rec_on H H1 H2 := decidable.rec_on H (λh, false.rec _ (H3 h)) (λh, H4) definition by_cases {q : Type} [C : decidable p] (Hpq : p → q) (Hnpq : ¬p → q) : q := decidable.rec_on C (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp) theorem em (p : Prop) [H : decidable p] : p ∨ ¬p := by_cases (λ Hp, or.inl Hp) (λ Hnp, or.inr Hnp) theorem by_contradiction [Hp : decidable p] (H : ¬p → false) : p := by_cases (assume H1 : p, H1) (assume H1 : ¬p, false.rec _ (H H1)) end decidable section variables {p q : Prop} open decidable definition decidable_of_decidable_of_iff (Hp : decidable p) (H : p ↔ q) : decidable q := decidable.rec_on Hp (assume Hp : p, inl (iff.elim_left H Hp)) (assume Hnp : ¬p, inr (iff.elim_left (not_iff_not_of_iff H) Hnp)) definition decidable_of_decidable_of_eq (Hp : decidable p) (H : p = q) : decidable q := decidable_of_decidable_of_iff Hp (iff.of_eq H) end section variables {p q : Prop} open decidable (rec_on inl inr) definition decidable_and [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ∧ q) := rec_on Hp (assume Hp : p, rec_on Hq (assume Hq : q, inl (and.intro Hp Hq)) (assume Hnq : ¬q, inr (assume H : p ∧ q, and.rec_on H (assume Hp Hq, absurd Hq Hnq)))) (assume Hnp : ¬p, inr (assume H : p ∧ q, and.rec_on H (assume Hp Hq, absurd Hp Hnp))) definition decidable_or [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ∨ q) := rec_on Hp (assume Hp : p, inl (or.inl Hp)) (assume Hnp : ¬p, rec_on Hq (assume Hq : q, inl (or.inr Hq)) (assume Hnq : ¬q, inr (assume H : p ∨ q, or.elim H (assume Hp, absurd Hp Hnp) (assume Hq, absurd Hq Hnq)))) definition decidable_not [instance] [Hp : decidable p] : decidable (¬p) := rec_on Hp (assume Hp, inr (λ Hnp, absurd Hp Hnp)) (assume Hnp, inl Hnp) definition decidable_implies [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p → q) := rec_on Hp (assume Hp : p, rec_on Hq (assume Hq : q, inl (assume H, Hq)) (assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq))) (assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp)) definition decidable_iff [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ↔ q) := show decidable ((p → q) ∧ (q → p)), from _ end definition decidable_pred [reducible] {A : Type} (R : A → Prop) := Π (a : A), decidable (R a) definition decidable_rel [reducible] {A : Type} (R : A → A → Prop) := Π (a b : A), decidable (R a b) definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A) definition decidable_ne [instance] {A : Type} [H : decidable_eq A] : Π (a b : A), decidable (a ≠ b) := show Π x y : A, decidable (x = y → false), from _ namespace bool definition ff_ne_tt : ff = tt → false | [none] end bool open bool definition is_dec_eq {A : Type} (p : A → A → bool) : Prop := ∀ ⦃x y : A⦄, p x y = tt → x = y definition is_dec_refl {A : Type} (p : A → A → bool) : Prop := ∀x, p x x = tt open decidable protected definition bool.has_decidable_eq [instance] : ∀a b : bool, decidable (a = b) | ff ff := inl rfl | ff tt := inr ff_ne_tt | tt ff := inr (ne.symm ff_ne_tt) | tt tt := inl rfl definition decidable_eq_of_bool_pred {A : Type} {p : A → A → bool} (H₁ : is_dec_eq p) (H₂ : is_dec_refl p) : decidable_eq A := take x y : A, by_cases (assume Hp : p x y = tt, inl (H₁ Hp)) (assume Hn : ¬ p x y = tt, inr (assume Hxy : x = y, absurd (H₂ y) (eq.rec_on Hxy Hn))) /- inhabited -/ inductive inhabited [class] (A : Type) : Type := mk : A → inhabited A protected definition inhabited.value {A : Type} (h : inhabited A) : A := inhabited.rec (λa, a) h protected definition inhabited.destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B := inhabited.rec H2 H1 definition default (A : Type) [H : inhabited A] : A := inhabited.rec (λa, a) H opaque definition arbitrary (A : Type) [H : inhabited A] : A := inhabited.rec (λa, a) H definition Prop.is_inhabited [instance] : inhabited Prop := inhabited.mk true definition inhabited_fun [instance] (A : Type) {B : Type} [H : inhabited B] : inhabited (A → B) := inhabited.rec_on H (λb, inhabited.mk (λa, b)) definition inhabited_Pi [instance] (A : Type) {B : A → Type} [H : Πx, inhabited (B x)] : inhabited (Πx, B x) := inhabited.mk (λa, inhabited.rec_on (H a) (λb, b)) protected definition bool.is_inhabited [instance] : inhabited bool := inhabited.mk ff inductive nonempty [class] (A : Type) : Prop := intro : A → nonempty A protected definition nonempty.elim {A : Type} {B : Prop} (H1 : nonempty A) (H2 : A → B) : B := nonempty.rec H2 H1 theorem nonempty_of_inhabited [instance] {A : Type} [H : inhabited A] : nonempty A := nonempty.intro (default A) /- subsingleton -/ inductive subsingleton [class] (A : Type) : Prop := intro : (∀ a b : A, a = b) → subsingleton A protected definition subsingleton.elim {A : Type} [H : subsingleton A] : ∀(a b : A), a = b := subsingleton.rec (fun p, p) H definition subsingleton_prop [instance] (p : Prop) : subsingleton p := subsingleton.intro (λa b, !proof_irrel) definition subsingleton_decidable [instance] (p : Prop) : subsingleton (decidable p) := subsingleton.intro (λ d₁, match d₁ with | inl t₁ := (λ d₂, match d₂ with | inl t₂ := eq.rec_on (proof_irrel t₁ t₂) rfl | inr f₂ := absurd t₁ f₂ end) | inr f₁ := (λ d₂, match d₂ with | inl t₂ := absurd t₂ f₁ | inr f₂ := eq.rec_on (proof_irrel f₁ f₂) rfl end) end) protected theorem rec_subsingleton {p : Prop} [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} [H3 : Π(h : p), subsingleton (H1 h)] [H4 : Π(h : ¬p), subsingleton (H2 h)] : subsingleton (decidable.rec_on H H1 H2) := decidable.rec_on H (λh, H3 h) (λh, H4 h) --this can be proven using dependent version of "by_cases" /- if-then-else -/ definition ite (c : Prop) [H : decidable c] {A : Type} (t e : A) : A := decidable.rec_on H (λ Hc, t) (λ Hnc, e) definition if_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (if c then t else e) = t := decidable.rec (λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e)) (λ Hnc : ¬c, absurd Hc Hnc) H definition if_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (if c then t else e) = e := decidable.rec (λ Hc : c, absurd Hc Hnc) (λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e)) H definition if_t_t (c : Prop) [H : decidable c] {A : Type} (t : A) : (if c then t else t) = t := decidable.rec (λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t)) (λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t)) H -- We use "dependent" if-then-else to be able to communicate the if-then-else condition -- to the branches definition dite (c : Prop) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A := decidable.rec_on H (λ Hc, t Hc) (λ Hnc, e Hnc) definition dif_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = t Hc := decidable.rec (λ Hc : c, eq.refl (@dite c (decidable.inl Hc) A t e)) (λ Hnc : ¬c, absurd Hc Hnc) H definition dif_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = e Hnc := decidable.rec (λ Hc : c, absurd Hc Hnc) (λ Hnc : ¬c, eq.refl (@dite c (decidable.inr Hnc) A t e)) H -- Remark: dite and ite are "definitionally equal" when we ignore the proofs. theorem dite_ite_eq (c : Prop) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e := rfl definition is_true (c : Prop) [H : decidable c] : Prop := if c then true else false definition is_false (c : Prop) [H : decidable c] : Prop := if c then false else true theorem of_is_true {c : Prop} [H₁ : decidable c] (H₂ : is_true c) : c := decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, !false.rec (if_neg Hnc ▸ H₂)) notation `dec_trivial` := of_is_true trivial theorem not_of_not_is_true {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_true c) : ¬ c := decidable.rec_on H₁ (λ Hc, absurd true.intro (if_pos Hc ▸ H₂)) (λ Hnc, Hnc) theorem not_of_is_false {c : Prop} [H₁ : decidable c] (H₂ : is_false c) : ¬ c := decidable.rec_on H₁ (λ Hc, !false.rec (if_pos Hc ▸ H₂)) (λ Hnc, Hnc) theorem of_not_is_false {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_false c) : c := decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, absurd true.intro (if_neg Hnc ▸ H₂))