/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Weak orders "≤", strict orders "<", and structures that include both. -/ import logic.eq logic.connectives algebra.binary algebra.priority open eq eq.ops function variables {A : Type} /- weak orders -/ structure weak_order [class] (A : Type) extends has_le A := (le_refl : ∀a, le a a) (le_trans : ∀a b c, le a b → le b c → le a c) (le_antisymm : ∀a b, le a b → le b a → a = b) section variables [weak_order A] theorem le.refl [refl] (a : A) : a ≤ a := !weak_order.le_refl theorem le_of_eq {a b : A} (H : a = b) : a ≤ b := H ▸ le.refl a theorem le.trans [trans] {a b c : A} : a ≤ b → b ≤ c → a ≤ c := !weak_order.le_trans theorem ge.trans [trans] {a b c : A} (H1 : a ≥ b) (H2: b ≥ c) : a ≥ c := le.trans H2 H1 theorem le.antisymm {a b : A} : a ≤ b → b ≤ a → a = b := !weak_order.le_antisymm -- Alternate syntax. (Abbreviations do not migrate well.) theorem eq_of_le_of_ge {a b : A} : a ≤ b → b ≤ a → a = b := !le.antisymm end structure linear_weak_order [class] (A : Type) extends weak_order A := (le_total : ∀a b, le a b ∨ le b a) section variables [linear_weak_order A] theorem le.total (a b : A) : a ≤ b ∨ b ≤ a := !linear_weak_order.le_total theorem le_of_not_ge {a b : A} (H : ¬ a ≥ b) : a ≤ b := or.resolve_left !le.total H end /- strict orders -/ structure strict_order [class] (A : Type) extends has_lt A := (lt_irrefl : ∀a, ¬ lt a a) (lt_trans : ∀a b c, lt a b → lt b c → lt a c) section variable [strict_order A] theorem lt.irrefl (a : A) : ¬ a < a := !strict_order.lt_irrefl theorem not_lt_self (a : A) : ¬ a < a := !lt.irrefl -- alternate syntax theorem lt_self_iff_false (a : A) : a < a ↔ false := iff_false_intro (lt.irrefl a) theorem lt.trans [trans] {a b c : A} : a < b → b < c → a < c := !strict_order.lt_trans theorem gt.trans [trans] {a b c : A} (H1 : a > b) (H2: b > c) : a > c := lt.trans H2 H1 theorem ne_of_lt {a b : A} (lt_ab : a < b) : a ≠ b := assume eq_ab : a = b, show false, from lt.irrefl b (eq_ab ▸ lt_ab) theorem ne_of_gt {a b : A} (gt_ab : a > b) : a ≠ b := ne.symm (ne_of_lt gt_ab) theorem lt.asymm {a b : A} (H : a < b) : ¬ b < a := assume H1 : b < a, lt.irrefl _ (lt.trans H H1) theorem not_lt_of_gt {a b : A} (H : a > b) : ¬ a < b := !lt.asymm H -- alternate syntax end /- well-founded orders -/ structure wf_strict_order [class] (A : Type) extends strict_order A := (wf_rec : ∀P : A → Type, (∀x, (∀y, lt y x → P y) → P x) → ∀x, P x) definition wf.rec_on {A : Type} [s : wf_strict_order A] {P : A → Type} (x : A) (H : ∀x, (∀y, wf_strict_order.lt y x → P y) → P x) : P x := wf_strict_order.wf_rec P H x theorem wf.ind_on.{u v} {A : Type.{u}} [s : wf_strict_order.{u 0} A] {P : A → Prop} (x : A) (H : ∀x, (∀y, wf_strict_order.lt y x → P y) → P x) : P x := wf.rec_on x H /- structures with a weak and a strict order -/ structure order_pair [class] (A : Type) extends weak_order A, has_lt A := (le_of_lt : ∀ a b, lt a b → le a b) (lt_of_lt_of_le : ∀ a b c, lt a b → le b c → lt a c) (lt_of_le_of_lt : ∀ a b c, le a b → lt b c → lt a c) (lt_irrefl : ∀ a, ¬ lt a a) section variable [s : order_pair A] variables {a b c : A} include s theorem le_of_lt : a < b → a ≤ b := !order_pair.le_of_lt theorem lt_of_lt_of_le [trans] : a < b → b ≤ c → a < c := !order_pair.lt_of_lt_of_le theorem lt_of_le_of_lt [trans] : a ≤ b → b < c → a < c := !order_pair.lt_of_le_of_lt private theorem lt_irrefl (s' : order_pair A) (a : A) : ¬ a < a := !order_pair.lt_irrefl private theorem lt_trans (s' : order_pair A) (a b c: A) (lt_ab : a < b) (lt_bc : b < c) : a < c := lt_of_lt_of_le lt_ab (le_of_lt lt_bc) definition order_pair.to_strict_order [trans_instance] : strict_order A := ⦃ strict_order, s, lt_irrefl := lt_irrefl s, lt_trans := lt_trans s ⦄ theorem gt_of_gt_of_ge [trans] (H1 : a > b) (H2 : b ≥ c) : a > c := lt_of_le_of_lt H2 H1 theorem gt_of_ge_of_gt [trans] (H1 : a ≥ b) (H2 : b > c) : a > c := lt_of_lt_of_le H2 H1 theorem not_le_of_gt (H : a > b) : ¬ a ≤ b := assume H1 : a ≤ b, lt.irrefl _ (lt_of_lt_of_le H H1) theorem not_lt_of_ge (H : a ≥ b) : ¬ a < b := assume H1 : a < b, lt.irrefl _ (lt_of_le_of_lt H H1) end structure strong_order_pair [class] (A : Type) extends weak_order A, has_lt A := (le_iff_lt_or_eq : ∀a b, le a b ↔ lt a b ∨ a = b) (lt_irrefl : ∀ a, ¬ lt a a) section strong_order_pair variable [strong_order_pair A] theorem le_iff_lt_or_eq {a b : A} : a ≤ b ↔ a < b ∨ a = b := !strong_order_pair.le_iff_lt_or_eq theorem lt_or_eq_of_le {a b : A} (le_ab : a ≤ b) : a < b ∨ a = b := iff.mp le_iff_lt_or_eq le_ab theorem le_of_lt_or_eq {a b : A} (lt_or_eq : a < b ∨ a = b) : a ≤ b := iff.mpr le_iff_lt_or_eq lt_or_eq private theorem lt_irrefl' (a : A) : ¬ a < a := !strong_order_pair.lt_irrefl private theorem le_of_lt' (a b : A) : a < b → a ≤ b := take Hlt, le_of_lt_or_eq (or.inl Hlt) private theorem lt_iff_le_and_ne {a b : A} : a < b ↔ (a ≤ b ∧ a ≠ b) := iff.intro (take Hlt, and.intro (le_of_lt_or_eq (or.inl Hlt)) (take Hab, absurd (Hab ▸ Hlt) !lt_irrefl')) (take Hand, have Hor : a < b ∨ a = b, from lt_or_eq_of_le (and.left Hand), or_resolve_left Hor (and.right Hand)) theorem lt_of_le_of_ne {a b : A} : a ≤ b → a ≠ b → a < b := take H1 H2, iff.mpr lt_iff_le_and_ne (and.intro H1 H2) private theorem ne_of_lt' {a b : A} (H : a < b) : a ≠ b := and.right ((iff.mp lt_iff_le_and_ne) H) private theorem lt_of_lt_of_le' (a b c : A) : a < b → b ≤ c → a < c := assume lt_ab : a < b, assume le_bc : b ≤ c, have le_ac : a ≤ c, from le.trans (le_of_lt' _ _ lt_ab) le_bc, have ne_ac : a ≠ c, from assume eq_ac : a = c, have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc, have eq_ab : a = b, from le.antisymm (le_of_lt' _ _ lt_ab) le_ba, show false, from ne_of_lt' lt_ab eq_ab, show a < c, from iff.mpr (lt_iff_le_and_ne) (and.intro le_ac ne_ac) theorem lt_of_le_of_lt' (a b c : A) : a ≤ b → b < c → a < c := assume le_ab : a ≤ b, assume lt_bc : b < c, have le_ac : a ≤ c, from le.trans le_ab (le_of_lt' _ _ lt_bc), have ne_ac : a ≠ c, from assume eq_ac : a = c, have le_cb : c ≤ b, from eq_ac ▸ le_ab, have eq_bc : b = c, from le.antisymm (le_of_lt' _ _ lt_bc) le_cb, show false, from ne_of_lt' lt_bc eq_bc, show a < c, from iff.mpr (lt_iff_le_and_ne) (and.intro le_ac ne_ac) end strong_order_pair definition strong_order_pair.to_order_pair [trans_instance] [s : strong_order_pair A] : order_pair A := ⦃ order_pair, s, lt_irrefl := lt_irrefl', le_of_lt := le_of_lt', lt_of_le_of_lt := lt_of_le_of_lt', lt_of_lt_of_le := lt_of_lt_of_le' ⦄ /- linear orders -/ structure linear_order_pair [class] (A : Type) extends order_pair A, linear_weak_order A structure linear_strong_order_pair [class] (A : Type) extends strong_order_pair A, linear_weak_order A definition linear_strong_order_pair.to_linear_order_pair [trans_instance] [s : linear_strong_order_pair A] : linear_order_pair A := ⦃ linear_order_pair, s, strong_order_pair.to_order_pair ⦄ section variable [linear_strong_order_pair A] variables (a b c : A) theorem lt.trichotomy : a < b ∨ a = b ∨ b < a := or.elim (le.total a b) (assume H : a ≤ b, or.elim (iff.mp !le_iff_lt_or_eq H) (assume H1, or.inl H1) (assume H1, or.inr (or.inl H1))) (assume H : b ≤ a, or.elim (iff.mp !le_iff_lt_or_eq H) (assume H1, or.inr (or.inr H1)) (assume H1, or.inr (or.inl (H1⁻¹)))) theorem lt.by_cases {a b : A} {P : Prop} (H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P := or.elim !lt.trichotomy (assume H, H1 H) (assume H, or.elim H (assume H', H2 H') (assume H', H3 H')) definition lt_ge_by_cases {a b : A} {P : Prop} (H1 : a < b → P) (H2 : a ≥ b → P) : P := lt.by_cases H1 (λH, H2 (H ▸ le.refl a)) (λH, H2 (le_of_lt H)) theorem le_of_not_gt {a b : A} (H : ¬ a > b) : a ≤ b := lt.by_cases (assume H', absurd H' H) (assume H', H' ▸ !le.refl) (assume H', le_of_lt H') theorem lt_of_not_ge {a b : A} (H : ¬ a ≥ b) : a < b := lt.by_cases (assume H', absurd (le_of_lt H') H) (assume H', absurd (H' ▸ !le.refl) H) (assume H', H') theorem lt_or_ge : a < b ∨ a ≥ b := lt.by_cases (assume H1 : a < b, or.inl H1) (assume H1 : a = b, or.inr (H1 ▸ le.refl a)) (assume H1 : a > b, or.inr (le_of_lt H1)) theorem le_or_gt : a ≤ b ∨ a > b := !or.swap (lt_or_ge b a) theorem lt_or_gt_of_ne {a b : A} (H : a ≠ b) : a < b ∨ a > b := lt.by_cases (assume H1, or.inl H1) (assume H1, absurd H1 H) (assume H1, or.inr H1) end open decidable structure decidable_linear_order [class] (A : Type) extends linear_strong_order_pair A := (decidable_lt : decidable_rel lt) section variable [s : decidable_linear_order A] variables {a b c d : A} include s open decidable definition decidable_lt [instance] : decidable (a < b) := @decidable_linear_order.decidable_lt _ _ _ _ definition decidable_le [instance] : decidable (a ≤ b) := by_cases (assume H : a < b, inl (le_of_lt H)) (assume H : ¬ a < b, have H1 : b ≤ a, from le_of_not_gt H, by_cases (assume H2 : b < a, inr (not_le_of_gt H2)) (assume H2 : ¬ b < a, inl (le_of_not_gt H2))) definition has_decidable_eq [instance] : decidable (a = b) := by_cases (assume H : a ≤ b, by_cases (assume H1 : b ≤ a, inl (le.antisymm H H1)) (assume H1 : ¬ b ≤ a, inr (assume H2 : a = b, H1 (H2 ▸ le.refl a)))) (assume H : ¬ a ≤ b, (inr (assume H1 : a = b, H (H1 ▸ !le.refl)))) theorem eq_or_lt_of_not_lt {a b : A} (H : ¬ a < b) : a = b ∨ b < a := if Heq : a = b then or.inl Heq else or.inr (lt_of_not_ge (λ Hge, H (lt_of_le_of_ne Hge Heq))) theorem eq_or_lt_of_le {a b : A} (H : a ≤ b) : a = b ∨ a < b := begin cases eq_or_lt_of_not_lt (not_lt_of_ge H), exact or.inl a_1⁻¹, exact or.inr a_1 end -- testing equality first may result in more definitional equalities definition lt.cases {B : Type} (a b : A) (t_lt t_eq t_gt : B) : B := if a = b then t_eq else (if a < b then t_lt else t_gt) theorem lt.cases_of_eq {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a = b) : lt.cases a b t_lt t_eq t_gt = t_eq := if_pos H theorem lt.cases_of_lt {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a < b) : lt.cases a b t_lt t_eq t_gt = t_lt := if_neg (ne_of_lt H) ⬝ if_pos H theorem lt.cases_of_gt {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a > b) : lt.cases a b t_lt t_eq t_gt = t_gt := if_neg (ne.symm (ne_of_lt H)) ⬝ if_neg (lt.asymm H) definition min (a b : A) : A := if a ≤ b then a else b definition max (a b : A) : A := if a ≤ b then b else a /- these show min and max form a lattice -/ theorem min_le_left (a b : A) : min a b ≤ a := by_cases (assume H : a ≤ b, by rewrite [↑min, if_pos H]) (assume H : ¬ a ≤ b, by rewrite [↑min, if_neg H]; apply le_of_lt (lt_of_not_ge H)) theorem min_le_right (a b : A) : min a b ≤ b := by_cases (assume H : a ≤ b, by rewrite [↑min, if_pos H]; apply H) (assume H : ¬ a ≤ b, by rewrite [↑min, if_neg H]) theorem le_min {a b c : A} (H₁ : c ≤ a) (H₂ : c ≤ b) : c ≤ min a b := by_cases (assume H : a ≤ b, by rewrite [↑min, if_pos H]; apply H₁) (assume H : ¬ a ≤ b, by rewrite [↑min, if_neg H]; apply H₂) theorem le_max_left (a b : A) : a ≤ max a b := by_cases (assume H : a ≤ b, by rewrite [↑max, if_pos H]; apply H) (assume H : ¬ a ≤ b, by rewrite [↑max, if_neg H]) theorem le_max_right (a b : A) : b ≤ max a b := by_cases (assume H : a ≤ b, by rewrite [↑max, if_pos H]) (assume H : ¬ a ≤ b, by rewrite [↑max, if_neg H]; apply le_of_lt (lt_of_not_ge H)) theorem max_le {a b c : A} (H₁ : a ≤ c) (H₂ : b ≤ c) : max a b ≤ c := by_cases (assume H : a ≤ b, by rewrite [↑max, if_pos H]; apply H₂) (assume H : ¬ a ≤ b, by rewrite [↑max, if_neg H]; apply H₁) theorem le_max_left_iff_true (a b : A) : a ≤ max a b ↔ true := iff_true_intro (le_max_left a b) theorem le_max_right_iff_true (a b : A) : b ≤ max a b ↔ true := iff_true_intro (le_max_right a b) /- these are also proved for lattices, but with inf and sup in place of min and max -/ theorem eq_min {a b c : A} (H₁ : c ≤ a) (H₂ : c ≤ b) (H₃ : ∀{d}, d ≤ a → d ≤ b → d ≤ c) : c = min a b := le.antisymm (le_min H₁ H₂) (H₃ !min_le_left !min_le_right) theorem min.comm (a b : A) : min a b = min b a := eq_min !min_le_right !min_le_left (λ c H₁ H₂, le_min H₂ H₁) theorem min.assoc (a b c : A) : min (min a b) c = min a (min b c) := begin apply eq_min, { apply le.trans, apply min_le_left, apply min_le_left }, { apply le_min, apply le.trans, apply min_le_left, apply min_le_right, apply min_le_right }, { intros [d, H₁, H₂], apply le_min, apply le_min H₁, apply le.trans H₂, apply min_le_left, apply le.trans H₂, apply min_le_right } end theorem min.left_comm (a b c : A) : min a (min b c) = min b (min a c) := binary.left_comm (@min.comm A s) (@min.assoc A s) a b c theorem min.right_comm (a b c : A) : min (min a b) c = min (min a c) b := binary.right_comm (@min.comm A s) (@min.assoc A s) a b c theorem min_self (a : A) : min a a = a := by apply eq.symm; apply eq_min (le.refl a) !le.refl; intros; assumption theorem min_eq_left {a b : A} (H : a ≤ b) : min a b = a := by apply eq.symm; apply eq_min !le.refl H; intros; assumption theorem min_eq_right {a b : A} (H : b ≤ a) : min a b = b := eq.subst !min.comm (min_eq_left H) theorem eq_max {a b c : A} (H₁ : a ≤ c) (H₂ : b ≤ c) (H₃ : ∀{d}, a ≤ d → b ≤ d → c ≤ d) : c = max a b := le.antisymm (H₃ !le_max_left !le_max_right) (max_le H₁ H₂) theorem max.comm (a b : A) : max a b = max b a := eq_max !le_max_right !le_max_left (λ c H₁ H₂, max_le H₂ H₁) theorem max.assoc (a b c : A) : max (max a b) c = max a (max b c) := begin apply eq_max, { apply le.trans, apply le_max_left a b, apply le_max_left }, { apply max_le, apply le.trans, apply le_max_right a b, apply le_max_left, apply le_max_right }, { intros [d, H₁, H₂], apply max_le, apply max_le H₁, apply le.trans !le_max_left H₂, apply le.trans !le_max_right H₂} end theorem max.left_comm (a b c : A) : max a (max b c) = max b (max a c) := binary.left_comm (@max.comm A s) (@max.assoc A s) a b c theorem max.right_comm (a b c : A) : max (max a b) c = max (max a c) b := binary.right_comm (@max.comm A s) (@max.assoc A s) a b c theorem max_self (a : A) : max a a = a := by apply eq.symm; apply eq_max (le.refl a) !le.refl; intros; assumption theorem max_eq_left {a b : A} (H : b ≤ a) : max a b = a := by apply eq.symm; apply eq_max !le.refl H; intros; assumption theorem max_eq_right {a b : A} (H : a ≤ b) : max a b = b := eq.subst !max.comm (max_eq_left H) /- these rely on lt_of_lt -/ theorem min_eq_left_of_lt {a b : A} (H : a < b) : min a b = a := min_eq_left (le_of_lt H) theorem min_eq_right_of_lt {a b : A} (H : b < a) : min a b = b := min_eq_right (le_of_lt H) theorem max_eq_left_of_lt {a b : A} (H : b < a) : max a b = a := max_eq_left (le_of_lt H) theorem max_eq_right_of_lt {a b : A} (H : a < b) : max a b = b := max_eq_right (le_of_lt H) /- these use the fact that it is a linear ordering -/ theorem lt_min {a b c : A} (H₁ : a < b) (H₂ : a < c) : a < min b c := or.elim !le_or_gt (assume H : b ≤ c, by rewrite (min_eq_left H); apply H₁) (assume H : b > c, by rewrite (min_eq_right_of_lt H); apply H₂) theorem max_lt {a b c : A} (H₁ : a < c) (H₂ : b < c) : max a b < c := or.elim !le_or_gt (assume H : a ≤ b, by rewrite (max_eq_right H); apply H₂) (assume H : a > b, by rewrite (max_eq_left_of_lt H); apply H₁) end /- order instances -/ definition weak_order_Prop [instance] : weak_order Prop := ⦃ weak_order, le := λx y, x → y, le_refl := λx, id, le_trans := λa b c H1 H2 x, H2 (H1 x), le_antisymm := λf g H1 H2, propext (and.intro H1 H2) ⦄ definition weak_order_fun [instance] (A B : Type) [weak_order B] : weak_order (A → B) := ⦃ weak_order, le := λx y, ∀b, x b ≤ y b, le_refl := λf b, !le.refl, le_trans := λf g h H1 H2 b, !le.trans (H1 b) (H2 b), le_antisymm := λf g H1 H2, funext (λb, !le.antisymm (H1 b) (H2 b)) ⦄ definition weak_order_dual {A : Type} (wo : weak_order A) : weak_order A := ⦃ weak_order, le := λx y, y ≤ x, le_refl := le.refl, le_trans := take a b c `b ≤ a` `c ≤ b`, le.trans `c ≤ b` `b ≤ a`, le_antisymm := take a b `b ≤ a` `a ≤ b`, le.antisymm `a ≤ b` `b ≤ a` ⦄ lemma le_dual_eq_le {A : Type} (wo : weak_order A) (a b : A) : @le _ (@weak_order.to_has_le _ (weak_order_dual wo)) a b = @le _ (@weak_order.to_has_le _ wo) b a := rfl -- what to do with the strict variants?