/- Copyright (c) 2014-15 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Partially ported from Coq HoTT Theorems about pi-types (dependent function spaces) -/ import types.sigma arity open eq equiv is_equiv funext sigma namespace pi variables {A A' : Type} {B : A → Type} {B' : A' → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type} {a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {f g : Πa, B a} /- Paths -/ /- Paths [p : f ≈ g] in a function type [Πx:X, P x] are equivalent to functions taking values in path types, [H : Πx:X, f x ≈ g x], or concisely, [H : f ∼ g]. This equivalence, however, is just the combination of [apd10] and function extensionality [funext], and as such, [path_forall], et seq. are given in axioms.funext and path: -/ /- Now we show how these things compute. -/ definition apd10_eq_of_homotopy (h : f ∼ g) : apd10 (eq_of_homotopy h) ∼ h := apd10 (right_inv apd10 h) definition eq_of_homotopy_eta (p : f = g) : eq_of_homotopy (apd10 p) = p := left_inv apd10 p definition eq_of_homotopy_idp (f : Πa, B a) : eq_of_homotopy (λx : A, refl (f x)) = refl f := !eq_of_homotopy_eta /- The identification of the path space of a dependent function space, up to equivalence, is of course just funext. -/ definition eq_equiv_homotopy (f g : Πx, B x) : (f = g) ≃ (f ∼ g) := equiv.mk _ !is_equiv_apd definition is_equiv_eq_of_homotopy [instance] (f g : Πx, B x) : is_equiv (@eq_of_homotopy _ _ f g) := is_equiv_inv apd10 definition homotopy_equiv_eq (f g : Πx, B x) : (f ∼ g) ≃ (f = g) := equiv.mk _ !is_equiv_eq_of_homotopy /- Transport -/ definition pi_transport (p : a = a') (f : Π(b : B a), C a b) : (transport (λa, Π(b : B a), C a b) p f) ∼ (λb, transport (C a') !tr_inv_tr (transportD _ p _ (f (p⁻¹ ▸ b)))) := eq.rec_on p (λx, idp) /- A special case of [transport_pi] where the type [B] does not depend on [A], and so it is just a fixed type [B]. -/ definition pi_transport_constant {C : A → A' → Type} (p : a = a') (f : Π(b : A'), C a b) (b : A') : (transport (λa, Π(b : A'), C a b) p f) b = transport (λa, C a b) p (f b) := eq.rec_on p idp /- Pathovers -/ definition pi_pathover {f : Πb, C a b} {g : Πb', C a' b'} {p : a = a'} (r : Π(b : B a) (b' : B a') (q : b =[p] b'), f b =[apo011 C p q] g b') : f =[p] g := begin cases p, apply pathover_idp_of_eq, apply eq_of_homotopy, intro b, apply eq_of_pathover_idp, apply r end definition pi_pathover_left {f : Πb, C a b} {g : Πb', C a' b'} {p : a = a'} (r : Π(b : B a), f b =[apo011 C p !pathover_tr] g (p ▸ b)) : f =[p] g := begin cases p, apply pathover_idp_of_eq, apply eq_of_homotopy, intro b, apply eq_of_pathover_idp, apply r end definition pi_pathover_right {f : Πb, C a b} {g : Πb', C a' b'} {p : a = a'} (r : Π(b' : B a'), f (p⁻¹ ▸ b') =[apo011 C p !tr_pathover] g b') : f =[p] g := begin cases p, apply pathover_idp_of_eq, apply eq_of_homotopy, intro b, apply eq_of_pathover_idp, apply r end definition pi_pathover_constant {C : A → A' → Type} {f : Π(b : A'), C a b} {g : Π(b : A'), C a' b} {p : a = a'} (r : Π(b : A'), f b =[p] g b) : f =[p] g := begin cases p, apply pathover_idp_of_eq, apply eq_of_homotopy, intro b, exact eq_of_pathover_idp (r b), end /- Maps on paths -/ /- The action of maps given by lambda. -/ definition ap_lambdaD {C : A' → Type} (p : a = a') (f : Πa b, C b) : ap (λa b, f a b) p = eq_of_homotopy (λb, ap (λa, f a b) p) := begin apply (eq.rec_on p), apply inverse, apply eq_of_homotopy_idp end /- Dependent paths -/ /- with more implicit arguments the conclusion of the following theorem is (Π(b : B a), transportD B C p b (f b) = g (transport B p b)) ≃ (transport (λa, Π(b : B a), C a b) p f = g) -/ definition heq_piD (p : a = a') (f : Π(b : B a), C a b) (g : Π(b' : B a'), C a' b') : (Π(b : B a), p ▸D (f b) = g (p ▸ b)) ≃ (p ▸ f = g) := eq.rec_on p (λg, !homotopy_equiv_eq) g definition heq_pi {C : A → Type} (p : a = a') (f : Π(b : B a), C a) (g : Π(b' : B a'), C a') : (Π(b : B a), p ▸ (f b) = g (p ▸ b)) ≃ (p ▸ f = g) := eq.rec_on p (λg, !homotopy_equiv_eq) g section open sigma sigma.ops /- more implicit arguments: (Π(b : B a), transport C (sigma_eq p idp) (f b) = g (p ▸ b)) ≃ (Π(b : B a), transportD B (λ(a : A) (b : B a), C ⟨a, b⟩) p b (f b) = g (transport B p b)) -/ definition heq_pi_sigma {C : (Σa, B a) → Type} (p : a = a') (f : Π(b : B a), C ⟨a, b⟩) (g : Π(b' : B a'), C ⟨a', b'⟩) : (Π(b : B a), (sigma_eq p !pathover_tr) ▸ (f b) = g (p ▸ b)) ≃ (Π(b : B a), p ▸D (f b) = g (p ▸ b)) := eq.rec_on p (λg, !equiv.refl) g end /- Functorial action -/ variables (f0 : A' → A) (f1 : Π(a':A'), B (f0 a') → B' a') /- The functoriality of [forall] is slightly subtle: it is contravariant in the domain type and covariant in the codomain, but the codomain is dependent on the domain. -/ definition pi_functor : (Π(a:A), B a) → (Π(a':A'), B' a') := (λg a', f1 a' (g (f0 a'))) definition ap_pi_functor {g g' : Π(a:A), B a} (h : g ∼ g') : ap (pi_functor f0 f1) (eq_of_homotopy h) = eq_of_homotopy (λa':A', (ap (f1 a') (h (f0 a')))) := begin apply (equiv_rect (@apd10 A B g g')), intro p, clear h, cases p, apply concat, exact (ap (ap (pi_functor f0 f1)) (eq_of_homotopy_idp g)), apply symm, apply eq_of_homotopy_idp end /- Equivalences -/ definition is_equiv_pi_functor [instance] [H0 : is_equiv f0] [H1 : Πa', @is_equiv (B (f0 a')) (B' a') (f1 a')] : is_equiv (pi_functor f0 f1) := begin apply (adjointify (pi_functor f0 f1) (pi_functor f0⁻¹ (λ(a : A) (b' : B' (f0⁻¹ a)), transport B (right_inv f0 a) ((f1 (f0⁻¹ a))⁻¹ b')))), intro h, apply eq_of_homotopy, unfold pi_functor, unfold function.compose, unfold function.id, begin intro a', apply (tr_rev _ (adj f0 a')), apply (transport (λx, f1 a' x = h a') (transport_compose B f0 (left_inv f0 a') _)), apply (tr_rev (λx, x = h a') (fn_tr_eq_tr_fn _ f1 _)), unfold function.compose, apply (tr_rev (λx, left_inv f0 a' ▸ x = h a') (right_inv (f1 _) _)), unfold function.id, apply apd end, begin intro h, apply eq_of_homotopy, intro a, apply (tr_rev (λx, right_inv f0 a ▸ x = h a) (left_inv (f1 _) _)), unfold function.id, apply apd end end definition pi_equiv_pi_of_is_equiv [H : is_equiv f0] [H1 : Πa', @is_equiv (B (f0 a')) (B' a') (f1 a')] : (Πa, B a) ≃ (Πa', B' a') := equiv.mk (pi_functor f0 f1) _ definition pi_equiv_pi (f0 : A' ≃ A) (f1 : Πa', (B (to_fun f0 a') ≃ B' a')) : (Πa, B a) ≃ (Πa', B' a') := pi_equiv_pi_of_is_equiv (to_fun f0) (λa', to_fun (f1 a')) definition pi_equiv_pi_id {P Q : A → Type} (g : Πa, P a ≃ Q a) : (Πa, P a) ≃ (Πa, Q a) := pi_equiv_pi equiv.refl g /- Truncatedness: any dependent product of n-types is an n-type -/ open is_trunc definition is_trunc_pi (B : A → Type) (n : trunc_index) [H : ∀a, is_trunc n (B a)] : is_trunc n (Πa, B a) := begin revert B H, eapply (trunc_index.rec_on n), {intro B H, fapply is_contr.mk, intro a, apply center, intro f, apply eq_of_homotopy, intro x, apply (center_eq (f x))}, {intro n IH B H, fapply is_trunc_succ_intro, intro f g, fapply is_trunc_equiv_closed, apply equiv.symm, apply eq_equiv_homotopy, apply IH, intro a, show is_trunc n (f a = g a), from is_trunc_eq n (f a) (g a)} end local attribute is_trunc_pi [instance] definition is_trunc_eq_pi [instance] [priority 500] (n : trunc_index) (f g : Πa, B a) [H : ∀a, is_trunc n (f a = g a)] : is_trunc n (f = g) := begin apply is_trunc_equiv_closed_rev, apply eq_equiv_homotopy end definition is_hprop_pi_eq [instance] [priority 490] (a : A) : is_hprop (Π(a' : A), a = a') := is_hprop_of_imp_is_contr ( assume (f : Πa', a = a'), assert H : is_contr A, from is_contr.mk a f, _) /- Symmetry of Π -/ definition is_equiv_flip [instance] {P : A → A' → Type} : is_equiv (@function.flip A A' P) := begin fapply is_equiv.mk, exact (@function.flip _ _ (function.flip P)), repeat (intro f; apply idp) end definition pi_comm_equiv {P : A → A' → Type} : (Πa b, P a b) ≃ (Πb a, P a b) := equiv.mk (@function.flip _ _ P) _ end pi attribute pi.is_trunc_pi [instance] [priority 1510]