/- Copyright (c) 2016 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Instantiate the complex numbers as a normed space, by temporarily making it an inner product space over the reals. -/ import theories.analysis.inner_product data.complex open nat real complex analysis classical noncomputable theory namespace complex namespace real_inner_product_space definition smul (a : ℝ) (z : ℂ) : ℂ := complex.mk (a * re z) (a * im z) definition ip (z w : ℂ) : ℝ := re z * re w + im z * im w proposition smul_left_distrib (a : ℝ) (z w : ℂ) : smul a (z + w) = smul a z + smul a w := by rewrite [↑smul, *re_add, *im_add, *left_distrib] proposition smul_right_distrib (a b : ℝ) (z : ℂ) : smul (a + b) z = smul a z + smul b z := by rewrite [↑smul, *right_distrib] proposition mul_smul (a b : ℝ) (z : ℂ) : smul (a * b) z = smul a (smul b z) := by rewrite [↑smul, *mul.assoc] proposition one_smul (z : ℂ) : smul 1 z = z := by rewrite [↑smul, *one_mul, complex.eta] proposition inner_add_left (x y z : ℂ) : ip (x + y) z = ip x z + ip y z := by rewrite [↑ip, re_add, im_add, *right_distrib, *add.assoc, add.left_comm (re y * re z)] proposition inner_smul_left (a : ℝ) (x y : ℂ) : ip (smul a x) y = a * ip x y := by rewrite [↑ip, ↑smul, left_distrib, *mul.assoc] proposition inner_comm (x y : ℂ) : ip x y = ip y x := by rewrite [↑ip, mul.comm, mul.comm (im x)] proposition inner_self_nonneg (x : ℂ) : ip x x ≥ 0 := add_nonneg (mul_self_nonneg (re x)) (mul_self_nonneg (im x)) proposition eq_zero_of_inner_self_eq_zero {x : ℂ} (H : ip x x = 0) : x = 0 := have re x = 0, from eq_zero_of_mul_self_add_mul_self_eq_zero H, have im x = 0, from eq_zero_of_mul_self_add_mul_self_eq_zero (by rewrite [↑ip at H, add.comm at H]; exact H), by rewrite [-complex.eta, `re x = 0`, `im x = 0`] end real_inner_product_space protected definition real_inner_product_space [reducible] : inner_product_space ℂ := ⦃ inner_product_space, complex.discrete_field, smul := real_inner_product_space.smul, inner := real_inner_product_space.ip, smul_left_distrib := real_inner_product_space.smul_left_distrib, smul_right_distrib := real_inner_product_space.smul_right_distrib, mul_smul := real_inner_product_space.mul_smul, one_smul := real_inner_product_space.one_smul, inner_add_left := real_inner_product_space.inner_add_left, inner_smul_left := real_inner_product_space.inner_smul_left, inner_comm := real_inner_product_space.inner_comm, inner_self_nonneg := real_inner_product_space.inner_self_nonneg, eq_zero_of_inner_self_eq_zero := @real_inner_product_space.eq_zero_of_inner_self_eq_zero ⦄ local attribute complex.real_inner_product_space [trans_instance] protected definition normed_vector_space [trans_instance] : normed_vector_space ℂ := _ theorem norm_squared_eq_cmod (z : ℂ) : ∥ z ∥^2 = cmod z := by rewrite norm_squared end complex