import macros definition associative {A : (Type U)} (f : A → A → A) := ∀ x y z, f (f x y) z = f x (f y z) definition commutative {A : (Type U)} (f : A → A → A) := ∀ x y, f x y = f y x definition is_identity {A : (Type U)} (f : A → A → A) (id : A) := ∀ x, f x id = x definition inverse_ex {A : (Type U)} (f : A → A → A) (id : A) := ∀ x, ∃ y, f x y = id definition struct := Type definition carrier (s : struct) := s definition mul_struct := sig s : struct, carrier s → carrier s → carrier s definition mul_to_s (m : mul_struct) : struct := proj1 m coercion mul_to_s definition mul {m : mul_struct} : carrier m → carrier m → carrier m := proj2 m infixl 70 * : mul definition semi_group := sig m : mul_struct, associative (@mul m) definition sg_to_mul (sg : semi_group) : mul_struct := proj1 sg definition sg_to_s (sg : semi_group) : struct := mul_to_s (sg_to_mul sg) coercion sg_to_s coercion sg_to_mul theorem sg_assoc {m : semi_group} (x y z : carrier m) : (x * y) * z = x * (y * z) := proj2 m x y z definition monoid := sig sg : semi_group, sig id : carrier sg, is_identity (@mul sg) id definition monoid_to_sg (m : monoid) : semi_group := proj1 m definition monoid_to_mul (m : monoid) : mul_struct := sg_to_mul (monoid_to_sg m) definition monoid_to_s (m : monoid) : struct := mul_to_s (monoid_to_mul m) coercion monoid_to_sg coercion monoid_to_mul coercion monoid_to_s definition one {m : monoid} : carrier m := proj1 (proj2 m) theorem monoid_id {m : monoid} (x : carrier m) : x * one = x := proj2 (proj2 m) x definition group := sig m : monoid, inverse_ex (@mul m) (@one m) definition group_to_monoid (g : group) : monoid := proj1 g definition group_to_sg (g : group) : semi_group := monoid_to_sg (group_to_monoid g) definition group_to_mul (g : group) : mul_struct := sg_to_mul (group_to_sg g) definition group_to_s (g : group) : struct := mul_to_s (group_to_mul g) coercion group_to_monoid coercion group_to_sg coercion group_to_mul coercion group_to_s theorem group_inv {g : group} (x : carrier g) : ∃ y, x * y = one := proj2 g x definition abelian_group := sig g : group, commutative (@mul g) definition abelian_to_group (ag : abelian_group) : group := proj1 ag definition abelian_to_monoid (ag : abelian_group) : monoid := group_to_monoid (abelian_to_group ag) definition abelian_to_sg (ag : abelian_group) : semi_group := monoid_to_sg (abelian_to_monoid ag) definition abelian_to_mul (ag : abelian_group) : mul_struct := sg_to_mul (abelian_to_sg ag) definition abelian_to_s (ag : abelian_group) : struct := mul_to_s (abelian_to_mul ag) coercion abelian_to_group coercion abelian_to_monoid coercion abelian_to_sg coercion abelian_to_mul coercion abelian_to_s theorem abelian_comm {ag : abelian_group} (x y : carrier ag) : x * y = y * x := proj2 ag x y theorem abelian_left_comm {ag : abelian_group} (x y z : carrier ag) : x * (y * z) = y * (x * z) := calc x * (y * z) = (x * y) * z : symm (sg_assoc x y z) ... = (y * x) * z : { abelian_comm x y } ... = y * (x * z) : sg_assoc y x z