/- Copyright (c) 2015 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Robert Y. Lewis Basic facts about the positive natural numbers. Developed primarily for use in the construction of ℝ. For the most part, the only theorems here are those needed for that construction. -/ import data.rat.order data.nat open nat rat subtype eq.ops open algebra namespace pnat definition pnat := { n : ℕ | n > 0 } notation `ℕ+` := pnat definition pos (n : ℕ) (H : n > 0) : ℕ+ := tag n H definition nat_of_pnat (p : ℕ+) : ℕ := elt_of p reserve postfix `~`:std.prec.max_plus local postfix ~ := nat_of_pnat theorem pnat_pos (p : ℕ+) : p~ > 0 := has_property p protected definition add (p q : ℕ+) : ℕ+ := tag (p~ + q~) (add_pos (pnat_pos p) (pnat_pos q)) protected definition mul (p q : ℕ+) : ℕ+ := tag (p~ * q~) (mul_pos (pnat_pos p) (pnat_pos q)) protected definition le (p q : ℕ+) := p~ ≤ q~ protected definition lt (p q : ℕ+) := p~ < q~ definition pnat_has_add [instance] [reducible] : has_add pnat := has_add.mk pnat.add definition pnat_has_mul [instance] [reducible] : has_mul pnat := has_mul.mk pnat.mul definition pnat_has_le [instance] [reducible] : has_le pnat := has_le.mk pnat.le definition pnat_has_lt [instance] [reducible] : has_lt pnat := has_lt.mk pnat.lt definition pnat_has_one [instance] [reducible] : has_one pnat := has_one.mk (pos (1:nat) dec_trivial) lemma mul.def (p q : ℕ+) : p * q = tag (p~ * q~) (mul_pos (pnat_pos p) (pnat_pos q)) := rfl lemma le.def (p q : ℕ+) : (p ≤ q) = (p~ ≤ q~) := rfl lemma lt.def (p q : ℕ+) : (p < q) = (p~ < q~) := rfl protected theorem pnat.eq {p q : ℕ+} : p~ = q~ → p = q := subtype.eq definition pnat_le_decidable [instance] (p q : ℕ+) : decidable (p ≤ q) := begin rewrite le.def, exact nat.decidable_le p~ q~ end definition pnat_lt_decidable [instance] {p q : ℕ+} : decidable (p < q) := begin rewrite lt.def, exact nat.decidable_lt p~ q~ end theorem le.trans {p q r : ℕ+} : p ≤ q → q ≤ r → p ≤ r := begin rewrite +le.def, apply le.trans end definition max (p q : ℕ+) : ℕ+ := tag (max p~ q~) (lt_of_lt_of_le (!pnat_pos) (!le_max_right)) theorem max_right (a b : ℕ+) : max a b ≥ b := begin change b ≤ max a b, rewrite le.def, apply le_max_right end theorem max_left (a b : ℕ+) : max a b ≥ a := begin change a ≤ max a b, rewrite le.def, apply le_max_left end theorem max_eq_right {a b : ℕ+} (H : a < b) : max a b = b := begin rewrite lt.def at H, exact pnat.eq (max_eq_right_of_lt H) end theorem max_eq_left {a b : ℕ+} (H : ¬ a < b) : max a b = a := begin rewrite lt.def at H, exact pnat.eq (max_eq_left (le_of_not_gt H)) end theorem le_of_lt {a b : ℕ+} : a < b → a ≤ b := begin rewrite [lt.def, le.def], apply nat.le_of_lt end theorem not_lt_of_ge {a b : ℕ+} : a ≤ b → ¬ (b < a) := begin rewrite [lt.def, le.def], apply not_lt_of_ge end theorem le_of_not_gt {a b : ℕ+} : ¬ a < b → b ≤ a := begin rewrite [lt.def, le.def], apply le_of_not_gt end theorem eq_of_le_of_ge {a b : ℕ+} : a ≤ b → b ≤ a → a = b := begin rewrite [+le.def], intros H1 H2, exact pnat.eq (eq_of_le_of_ge H1 H2) end theorem le.refl (a : ℕ+) : a ≤ a := begin rewrite le.def end notation 2 := (tag 2 dec_trivial : ℕ+) notation 3 := (tag 3 dec_trivial : ℕ+) definition pone : ℕ+ := tag 1 dec_trivial definition rat_of_pnat [reducible] (n : ℕ+) : ℚ := n~ theorem pnat.to_rat_of_nat (n : ℕ+) : rat_of_pnat n = of_nat n~ := rfl -- these will come in rat theorem rat_of_nat_nonneg (n : ℕ) : 0 ≤ of_nat n := trivial theorem rat_of_pnat_ge_one (n : ℕ+) : rat_of_pnat n ≥ 1 := of_nat_le_of_nat_of_le (pnat_pos n) theorem rat_of_pnat_is_pos (n : ℕ+) : rat_of_pnat n > 0 := of_nat_lt_of_nat_of_lt (pnat_pos n) theorem of_nat_le_of_nat_of_le {m n : ℕ} (H : m ≤ n) : of_nat m ≤ of_nat n := of_nat_le_of_nat_of_le H theorem of_nat_lt_of_nat_of_lt {m n : ℕ} (H : m < n) : of_nat m < of_nat n := of_nat_lt_of_nat_of_lt H theorem rat_of_pnat_le_of_pnat_le {m n : ℕ+} (H : m ≤ n) : rat_of_pnat m ≤ rat_of_pnat n := begin rewrite le.def at H, exact of_nat_le_of_nat_of_le H end theorem rat_of_pnat_lt_of_pnat_lt {m n : ℕ+} (H : m < n) : rat_of_pnat m < rat_of_pnat n := begin rewrite lt.def at H, exact of_nat_lt_of_nat_of_lt H end theorem pnat_le_of_rat_of_pnat_le {m n : ℕ+} (H : rat_of_pnat m ≤ rat_of_pnat n) : m ≤ n := begin rewrite le.def, exact le_of_of_nat_le_of_nat H end definition inv (n : ℕ+) : ℚ := (1 : ℚ) / rat_of_pnat n local postfix `⁻¹` := inv theorem inv_pos (n : ℕ+) : n⁻¹ > 0 := one_div_pos_of_pos !rat_of_pnat_is_pos theorem inv_le_one (n : ℕ+) : n⁻¹ ≤ (1 : ℚ) := begin unfold inv, change 1 / rat_of_pnat n ≤ 1 / 1, apply one_div_le_one_div_of_le, apply algebra.zero_lt_one, apply rat_of_pnat_ge_one end theorem inv_lt_one_of_gt {n : ℕ+} (H : n~ > 1) : n⁻¹ < (1 : ℚ) := begin unfold inv, change 1 / rat_of_pnat n < 1 / 1, apply one_div_lt_one_div_of_lt, apply algebra.zero_lt_one, rewrite pnat.to_rat_of_nat, apply (of_nat_lt_of_nat_of_lt H) end theorem pone_inv : pone⁻¹ = 1 := rfl theorem add_invs_nonneg (m n : ℕ+) : 0 ≤ m⁻¹ + n⁻¹ := begin apply rat.le_of_lt, apply add_pos, repeat apply inv_pos end theorem one_mul (n : ℕ+) : pone * n = n := begin apply pnat.eq, unfold pone, rewrite [mul.def, ↑nat_of_pnat, algebra.one_mul] end theorem pone_le (n : ℕ+) : pone ≤ n := begin rewrite le.def, exact succ_le_of_lt (pnat_pos n) end theorem pnat_to_rat_mul (a b : ℕ+) : rat_of_pnat (a * b) = rat_of_pnat a * rat_of_pnat b := rfl theorem mul_lt_mul_left {a b c : ℕ+} (H : a < b) : a * c < b * c := begin rewrite [lt.def at *], exact mul_lt_mul_of_pos_right H !pnat_pos end theorem one_lt_two : pone < 2 := !nat.le.refl theorem inv_two_mul_lt_inv (n : ℕ+) : (2 * n)⁻¹ < n⁻¹ := begin rewrite ↑inv, apply one_div_lt_one_div_of_lt, apply rat_of_pnat_is_pos, have H : n~ < (2 * n)~, begin rewrite -one_mul at {1}, rewrite -lt.def, apply mul_lt_mul_left, apply one_lt_two end, apply of_nat_lt_of_nat_of_lt, apply H end theorem inv_two_mul_le_inv (n : ℕ+) : (2 * n)⁻¹ ≤ n⁻¹ := rat.le_of_lt !inv_two_mul_lt_inv theorem inv_ge_of_le {p q : ℕ+} (H : p ≤ q) : q⁻¹ ≤ p⁻¹ := one_div_le_one_div_of_le !rat_of_pnat_is_pos (rat_of_pnat_le_of_pnat_le H) theorem inv_gt_of_lt {p q : ℕ+} (H : p < q) : q⁻¹ < p⁻¹ := one_div_lt_one_div_of_lt !rat_of_pnat_is_pos (rat_of_pnat_lt_of_pnat_lt H) theorem ge_of_inv_le {p q : ℕ+} (H : p⁻¹ ≤ q⁻¹) : q ≤ p := pnat_le_of_rat_of_pnat_le (le_of_one_div_le_one_div !rat_of_pnat_is_pos H) theorem two_mul (p : ℕ+) : rat_of_pnat (2 * p) = (1 + 1) * rat_of_pnat p := by rewrite pnat_to_rat_mul theorem add_halves (p : ℕ+) : (2 * p)⁻¹ + (2 * p)⁻¹ = p⁻¹ := begin rewrite [↑inv, -(add_halves (1 / (rat_of_pnat p))), algebra.div_div_eq_div_mul], have H : rat_of_pnat (2 * p) = rat_of_pnat p * (1 + 1), by rewrite [rat.mul.comm, two_mul], rewrite *H end theorem add_halves_double (m n : ℕ+) : m⁻¹ + n⁻¹ = ((2 * m)⁻¹ + (2 * n)⁻¹) + ((2 * m)⁻¹ + (2 * n)⁻¹) := have hsimp [visible] : ∀ a b : ℚ, (a + a) + (b + b) = (a + b) + (a + b), by intros; rewrite [rat.add.assoc, -(rat.add.assoc a b b), {_+b}rat.add.comm, -*rat.add.assoc], by rewrite [-add_halves m, -add_halves n, hsimp] theorem inv_mul_eq_mul_inv {p q : ℕ+} : (p * q)⁻¹ = p⁻¹ * q⁻¹ := begin rewrite [↑inv, pnat_to_rat_mul, algebra.one_div_mul_one_div] end theorem inv_mul_le_inv (p q : ℕ+) : (p * q)⁻¹ ≤ q⁻¹ := begin rewrite [inv_mul_eq_mul_inv, -{q⁻¹}rat.one_mul at {2}], apply algebra.mul_le_mul, apply inv_le_one, apply rat.le.refl, apply rat.le_of_lt, apply inv_pos, apply rat.le_of_lt rat.zero_lt_one end theorem pnat_mul_le_mul_left' (a b c : ℕ+) : a ≤ b → c * a ≤ c * b := begin rewrite +le.def, intro H, apply mul_le_mul_of_nonneg_left H, apply algebra.le_of_lt, apply pnat_pos end theorem mul.assoc (a b c : ℕ+) : a * b * c = a * (b * c) := pnat.eq !mul.assoc theorem mul.comm (a b : ℕ+) : a * b = b * a := pnat.eq !mul.comm theorem add.assoc (a b c : ℕ+) : a + b + c = a + (b + c) := pnat.eq !add.assoc theorem mul_le_mul_left (p q : ℕ+) : q ≤ p * q := begin rewrite [-one_mul at {1}, mul.comm, mul.comm p], apply pnat_mul_le_mul_left', apply pone_le end theorem mul_le_mul_right (p q : ℕ+) : p ≤ p * q := by rewrite mul.comm; apply mul_le_mul_left theorem pnat.lt_of_not_le {p q : ℕ+} : ¬ p ≤ q → q < p := begin rewrite [le.def, lt.def], apply lt_of_not_ge end theorem inv_cancel_left (p : ℕ+) : rat_of_pnat p * p⁻¹ = (1 : ℚ) := mul_one_div_cancel (ne.symm (ne_of_lt !rat_of_pnat_is_pos)) theorem inv_cancel_right (p : ℕ+) : p⁻¹ * rat_of_pnat p = (1 : ℚ) := by rewrite rat.mul.comm; apply inv_cancel_left theorem lt_add_left (p q : ℕ+) : p < p + q := begin have H : p~ < p~ + q~, begin rewrite -nat.add_zero at {1}, apply nat.add_lt_add_left, apply pnat_pos end, apply H end theorem inv_add_lt_left (p q : ℕ+) : (p + q)⁻¹ < p⁻¹ := by apply inv_gt_of_lt; apply lt_add_left theorem div_le_pnat (q : ℚ) (n : ℕ+) (H : q ≥ n⁻¹) : 1 / q ≤ rat_of_pnat n := begin apply algebra.div_le_of_le_mul, apply algebra.lt_of_lt_of_le, apply inv_pos, rotate 1, apply H, apply le_mul_of_div_le, apply rat_of_pnat_is_pos, apply H end theorem pnat_cancel' (n m : ℕ+) : (n * n * m)⁻¹ * (rat_of_pnat n * rat_of_pnat n) = m⁻¹ := assert hsimp : ∀ a b c : ℚ, (a * a * (b * b * c)) = (a * b) * (a * b) * c, begin intro a b c, rewrite[-*rat.mul.assoc], exact (!mul.right_comm ▸ rfl), end, by rewrite [rat.mul.comm, *inv_mul_eq_mul_inv, hsimp, *inv_cancel_left, *rat.one_mul] definition pceil (a : ℚ) : ℕ+ := tag (ubound a) !ubound_pos theorem pceil_helper {a : ℚ} {n : ℕ+} (H : pceil a ≤ n) (Ha : a > 0) : n⁻¹ ≤ 1 / a := algebra.le.trans (inv_ge_of_le H) (one_div_le_one_div_of_le Ha (ubound_ge a)) theorem inv_pceil_div (a b : ℚ) (Ha : a > 0) (Hb : b > 0) : (pceil (a / b))⁻¹ ≤ b / a := assert (pceil (a / b))⁻¹ ≤ 1 / (1 / (b / a)), begin apply one_div_le_one_div_of_le, show 0 < 1 / (b / a), from one_div_pos_of_pos (div_pos_of_pos_of_pos Hb Ha), show 1 / (b / a) ≤ rat_of_pnat (pceil (a / b)), begin rewrite div_div_eq_mul_div, rewrite algebra.one_mul, apply ubound_ge end end, begin rewrite one_div_one_div at this, exact this end theorem sep_by_inv {a b : ℚ} : a > b → ∃ N : ℕ+, a > (b + N⁻¹ + N⁻¹) := begin change b < a → ∃ N : ℕ+, (b + N⁻¹ + N⁻¹) < a, intro H, apply exists.elim (exists_add_lt_and_pos_of_lt H), intro c Hc, existsi (pceil ((1 + 1 + 1) / c)), apply algebra.lt.trans, rotate 1, apply and.left Hc, rewrite rat.add.assoc, apply rat.add_lt_add_left, rewrite -(algebra.add_halves c) at {3}, apply add_lt_add, repeat (apply algebra.lt_of_le_of_lt; apply inv_pceil_div; apply dec_trivial; apply and.right Hc; apply div_lt_div_of_pos_of_lt_of_pos; apply two_pos; exact dec_trivial; apply and.right Hc) end theorem nonneg_of_ge_neg_invs (a : ℚ) : (∀ n : ℕ+, -n⁻¹ ≤ a) → 0 ≤ a := begin intro H, apply algebra.le_of_not_gt, suppose a < 0, have H2 : 0 < -a, from neg_pos_of_neg this, (algebra.not_lt_of_ge !H) (iff.mp !lt_neg_iff_lt_neg (calc (pceil (of_num 2 / -a))⁻¹ ≤ -a / of_num 2 : !inv_pceil_div dec_trivial H2 ... < -a / 1 : div_lt_div_of_pos_of_lt_of_pos dec_trivial dec_trivial H2 ... = -a : !div_one)) end theorem pnat_bound {ε : ℚ} (Hε : ε > 0) : ∃ p : ℕ+, p⁻¹ ≤ ε := begin existsi (pceil (1 / ε)), rewrite -(one_div_one_div ε) at {2}, apply pceil_helper, apply le.refl, apply one_div_pos_of_pos Hε end theorem p_add_fractions (n : ℕ+) : (2 * n)⁻¹ + (2 * 3 * n)⁻¹ + (3 * n)⁻¹ = n⁻¹ := assert T : 2⁻¹ + 2⁻¹ * 3⁻¹ + 3⁻¹ = 1, from dec_trivial, by rewrite[*inv_mul_eq_mul_inv,-*right_distrib,T,rat.one_mul] theorem rat_power_two_le (k : ℕ+) : rat_of_pnat k ≤ 2^k~ := !binary_nat_bound end pnat