/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Ported from Coq HoTT Theorems about embeddings and surjections -/ import hit.trunc types.equiv cubical.square open equiv sigma sigma.ops eq trunc is_trunc pi is_equiv fiber prod variables {A B : Type} (f : A → B) {b : B} definition is_embedding [class] (f : A → B) := Π(a a' : A), is_equiv (ap f : a = a' → f a = f a') definition is_surjective [class] (f : A → B) := Π(b : B), ∥ fiber f b ∥ definition is_split_surjective [class] (f : A → B) := Π(b : B), fiber f b structure is_retraction [class] (f : A → B) := (sect : B → A) (right_inverse : Π(b : B), f (sect b) = b) structure is_section [class] (f : A → B) := (retr : B → A) (left_inverse : Π(a : A), retr (f a) = a) definition is_weakly_constant [class] (f : A → B) := Π(a a' : A), f a = f a' structure is_constant [class] (f : A → B) := (pt : B) (eq : Π(a : A), f a = pt) structure is_conditionally_constant [class] (f : A → B) := (g : ∥A∥ → B) (eq : Π(a : A), f a = g (tr a)) namespace function abbreviation sect [unfold 4] := @is_retraction.sect abbreviation right_inverse [unfold 4] := @is_retraction.right_inverse abbreviation retr [unfold 4] := @is_section.retr abbreviation left_inverse [unfold 4] := @is_section.left_inverse definition is_equiv_ap_of_embedding [instance] [H : is_embedding f] (a a' : A) : is_equiv (ap f : a = a' → f a = f a') := H a a' variable {f} definition is_injective_of_is_embedding [reducible] [H : is_embedding f] {a a' : A} : f a = f a' → a = a' := (ap f)⁻¹ definition is_embedding_of_is_injective [HA : is_hset A] [HB : is_hset B] (H : Π(a a' : A), f a = f a' → a = a') : is_embedding f := begin intro a a', fapply adjointify, {exact (H a a')}, {intro p, apply is_hset.elim}, {intro p, apply is_hset.elim} end variable (f) definition is_hprop_is_embedding [instance] : is_hprop (is_embedding f) := by unfold is_embedding; exact _ definition is_hprop_fiber_of_is_embedding [H : is_embedding f] (b : B) : is_hprop (fiber f b) := begin apply is_hprop.mk, intro v w, induction v with a p, induction w with a' q, induction q, fapply fiber_eq, { esimp, apply is_injective_of_is_embedding p}, { esimp [is_injective_of_is_embedding], symmetry, apply right_inv} end variable {f} definition is_surjective_rec_on {P : Type} (H : is_surjective f) (b : B) [Pt : is_hprop P] (IH : fiber f b → P) : P := trunc.rec_on (H b) IH variable (f) definition is_surjective_of_is_split_surjective [instance] [H : is_split_surjective f] : is_surjective f := λb, tr (H b) definition is_hprop_is_surjective [instance] : is_hprop (is_surjective f) := by unfold is_surjective; exact _ definition is_weakly_constant_ap [instance] [H : is_weakly_constant f] (a a' : A) : is_weakly_constant (ap f : a = a' → f a = f a') := take p q : a = a', have Π{b c : A} {r : b = c}, (H a b)⁻¹ ⬝ H a c = ap f r, from (λb c r, eq.rec_on r !con.left_inv), this⁻¹ ⬝ this definition is_constant_ap [unfold 4] [instance] [H : is_constant f] (a a' : A) : is_constant (ap f : a = a' → f a = f a') := begin induction H with b q, fapply is_constant.mk, { exact q a ⬝ (q a')⁻¹}, { intro p, induction p, exact !con.right_inv⁻¹} end definition is_contr_is_retraction [instance] [H : is_equiv f] : is_contr (is_retraction f) := begin have H2 : (Σ(g : B → A), Πb, f (g b) = b) ≃ is_retraction f, begin fapply equiv.MK, {intro x, induction x with g p, constructor, exact p}, {intro h, induction h, apply sigma.mk, assumption}, {intro h, induction h, reflexivity}, {intro x, induction x, reflexivity}, end, apply is_trunc_equiv_closed, exact H2, apply is_equiv.is_contr_right_inverse end definition is_contr_is_section [instance] [H : is_equiv f] : is_contr (is_section f) := begin have H2 : (Σ(g : B → A), Πa, g (f a) = a) ≃ is_section f, begin fapply equiv.MK, {intro x, induction x with g p, constructor, exact p}, {intro h, induction h, apply sigma.mk, assumption}, {intro h, induction h, reflexivity}, {intro x, induction x, reflexivity}, end, apply is_trunc_equiv_closed, exact H2, fapply is_trunc_equiv_closed, {apply sigma_equiv_sigma_id, intro g, apply eq_equiv_homotopy}, fapply is_trunc_equiv_closed, {apply fiber.sigma_char}, fapply is_contr_fiber_of_is_equiv, exact to_is_equiv (arrow_equiv_arrow_left_rev A (equiv.mk f H)), end definition is_embedding_of_is_equiv [instance] [H : is_equiv f] : is_embedding f := λa a', _ definition is_equiv_of_is_surjective_of_is_embedding [H : is_embedding f] [H' : is_surjective f] : is_equiv f := @is_equiv_of_is_contr_fun _ _ _ (λb, is_surjective_rec_on H' b (λa, is_contr.mk a (λa', fiber_eq ((ap f)⁻¹ ((point_eq a) ⬝ (point_eq a')⁻¹)) (by rewrite (right_inv (ap f)); rewrite inv_con_cancel_right)))) definition is_split_surjective_of_is_retraction [H : is_retraction f] : is_split_surjective f := λb, fiber.mk (sect f b) (right_inverse f b) definition is_constant_compose_point [constructor] [instance] (b : B) : is_constant (f ∘ point : fiber f b → B) := is_constant.mk b (λv, by induction v with a p;exact p) definition is_embedding_of_is_hprop_fiber [H : Π(b : B), is_hprop (fiber f b)] : is_embedding f := begin intro a a', fapply adjointify, { intro p, exact ap point (is_hprop.elim (fiber.mk a p) (fiber.mk a' idp))}, { exact abstract begin intro p, rewrite [-ap_compose], apply @is_constant.eq _ _ _ (is_constant_ap (f ∘ point) (fiber.mk a p) (fiber.mk a' idp)) end end }, { intro p, induction p, rewrite [▸*,is_hprop_elim_self]}, end -- definition is_embedding_of_is_section_inv' [H : is_section f] {a : A} {b : B} (p : f a = b) : -- a = retr f b := -- (left_inverse f a)⁻¹ ⬝ ap (retr f) p -- definition is_embedding_of_is_section_inv [H : is_section f] {a a' : A} (p : f a = f a') : -- a = a' := -- is_embedding_of_is_section_inv' f p ⬝ left_inverse f a' -- definition is_embedding_of_is_section [constructor] [instance] [H : is_section f] -- : is_embedding f := -- begin -- intro a a', -- fapply adjointify, -- { exact is_embedding_of_is_section_inv f}, -- { exact abstract begin -- assert H2 : Π {b : B} (p : f a = b), ap f (is_embedding_of_is_section_inv' f p) = p ⬝ _, -- { } -- -- intro p, rewrite [+ap_con,-ap_compose], -- -- check_expr natural_square (left_inverse f), -- -- induction H with g q, esimp, -- end end }, -- { intro p, induction p, esimp, apply con.left_inv}, -- end definition is_retraction_of_is_equiv [instance] [H : is_equiv f] : is_retraction f := is_retraction.mk f⁻¹ (right_inv f) definition is_section_of_is_equiv [instance] [H : is_equiv f] : is_section f := is_section.mk f⁻¹ (left_inv f) definition is_equiv_of_is_section_of_is_retraction [H1 : is_retraction f] [H2 : is_section f] : is_equiv f := let g := sect f in let h := retr f in adjointify f (g) (right_inverse f) (λa, calc g (f a) = h (f (g (f a))) : left_inverse ... = h (f a) : right_inverse f ... = a : left_inverse) section local attribute is_equiv_of_is_section_of_is_retraction [instance] variable (f) definition is_hprop_is_retraction_prod_is_section : is_hprop (is_retraction f × is_section f) := begin apply is_hprop_of_imp_is_contr, intro H, induction H with H1 H2, exact _, end end variable {f} local attribute is_hprop_is_retraction_prod_is_section [instance] definition is_retraction_prod_is_section_equiv_is_equiv : (is_retraction f × is_section f) ≃ is_equiv f := begin apply equiv_of_is_hprop, intro H, induction H, apply is_equiv_of_is_section_of_is_retraction, intro H, split, repeat exact _ end /- The definitions is_surjective_of_is_equiv is_equiv_equiv_is_embedding_times_is_surjective are in types.trunc -/ end function