/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Declaration of the torus -/ import hit.two_quotient open two_quotient eq bool unit equiv namespace torus open e_closure relation definition torus_R (x y : unit) := bool local infix `⬝r`:75 := @e_closure.trans unit torus_R star star star local postfix `⁻¹ʳ`:(max+10) := @e_closure.symm unit torus_R star star local notation `[`:max a `]`:0 := @e_closure.of_rel unit torus_R star star a inductive torus_Q : Π⦃x y : unit⦄, e_closure torus_R x y → e_closure torus_R x y → Type := | Qmk : torus_Q ([ff] ⬝r [tt]) ([tt] ⬝r [ff]) open torus_Q definition torus := two_quotient torus_R torus_Q notation `T²` := torus definition base : torus := incl0 _ _ star definition loop1 : base = base := incl1 _ _ ff definition loop2 : base = base := incl1 _ _ tt definition surf' : loop1 ⬝ loop2 = loop2 ⬝ loop1 := incl2 _ _ Qmk definition surf : square loop1 loop1 loop2 loop2 := square_of_eq (incl2 _ _ Qmk) protected definition rec {P : torus → Type} (Pb : P base) (Pl1 : Pb =[loop1] Pb) (Pl2 : Pb =[loop2] Pb) (Ps : squareover P surf Pl1 Pl1 Pl2 Pl2) (x : torus) : P x := begin induction x, { induction a, exact Pb}, { induction s: induction a; induction a', { exact Pl1}, { exact Pl2}}, { induction q, esimp, apply change_path_of_pathover, apply pathover_of_squareover, exact Ps}, end protected definition rec_on [reducible] {P : torus → Type} (x : torus) (Pb : P base) (Pl1 : Pb =[loop1] Pb) (Pl2 : Pb =[loop2] Pb) (Ps : squareover P surf Pl1 Pl1 Pl2 Pl2) : P x := torus.rec Pb Pl1 Pl2 Ps x theorem rec_loop1 {P : torus → Type} (Pb : P base) (Pl1 : Pb =[loop1] Pb) (Pl2 : Pb =[loop2] Pb) (Ps : squareover P surf Pl1 Pl1 Pl2 Pl2) : apd (torus.rec Pb Pl1 Pl2 Ps) loop1 = Pl1 := !rec_incl1 theorem rec_loop2 {P : torus → Type} (Pb : P base) (Pl1 : Pb =[loop1] Pb) (Pl2 : Pb =[loop2] Pb) (Ps : squareover P surf Pl1 Pl1 Pl2 Pl2) : apd (torus.rec Pb Pl1 Pl2 Ps) loop2 = Pl2 := !rec_incl1 protected definition elim {P : Type} (Pb : P) (Pl1 : Pb = Pb) (Pl2 : Pb = Pb) (Ps : square Pl1 Pl1 Pl2 Pl2) (x : torus) : P := begin induction x, { exact Pb}, { induction s, { exact Pl1}, { exact Pl2}}, { induction q, apply eq_of_square, exact Ps}, end protected definition elim_on [reducible] {P : Type} (x : torus) (Pb : P) (Pl1 : Pb = Pb) (Pl2 : Pb = Pb) (Ps : square Pl1 Pl1 Pl2 Pl2) : P := torus.elim Pb Pl1 Pl2 Ps x definition elim_loop1 {P : Type} {Pb : P} {Pl1 : Pb = Pb} {Pl2 : Pb = Pb} (Ps : square Pl1 Pl1 Pl2 Pl2) : ap (torus.elim Pb Pl1 Pl2 Ps) loop1 = Pl1 := !elim_incl1 definition elim_loop2 {P : Type} {Pb : P} {Pl1 : Pb = Pb} {Pl2 : Pb = Pb} (Ps : square Pl1 Pl1 Pl2 Pl2) : ap (torus.elim Pb Pl1 Pl2 Ps) loop2 = Pl2 := !elim_incl1 theorem elim_surf {P : Type} {Pb : P} {Pl1 : Pb = Pb} {Pl2 : Pb = Pb} (Ps : square Pl1 Pl1 Pl2 Pl2) : whisker_square (elim_loop1 Ps) (elim_loop1 Ps) (elim_loop2 Ps) (elim_loop2 Ps) (aps (torus.elim Pb Pl1 Pl2 Ps) surf) = Ps := begin apply whisker_square_aps_eq, apply elim_incl2 end end torus attribute torus.base [constructor] attribute torus.rec torus.elim [unfold 6] [recursor 6] --attribute torus.elim_type [unfold 5] attribute torus.rec_on torus.elim_on [unfold 2] --attribute torus.elim_type_on [unfold 1]