/- Copyright (c) 2015 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Jakob von Raumer -/ import .functor.functor open is_trunc eq namespace category structure strict_precategory [class] (ob : Type) extends precategory ob := mk' :: (is_hset_ob : is_hset ob) attribute strict_precategory.is_hset_ob [instance] definition strict_precategory.mk [reducible] {ob : Type} (C : precategory ob) (H : is_hset ob) : strict_precategory ob := precategory.rec_on C strict_precategory.mk' H structure Strict_precategory : Type := (carrier : Type) (struct : strict_precategory carrier) attribute Strict_precategory.struct [instance] [coercion] definition Strict_precategory.to_Precategory [coercion] [reducible] (C : Strict_precategory) : Precategory := Precategory.mk (Strict_precategory.carrier C) C open functor -- TODO: move to constructions.cat? definition precategory_strict_precategory [constructor] : precategory Strict_precategory := precategory.mk (λ A B, A ⇒ B) (λ A B C G F, G ∘f F) (λ A, 1) (λ A B C D, functor.assoc) (λ A B, functor.id_left) (λ A B, functor.id_right) definition Precategory_strict_precategory [constructor] := precategory.Mk precategory_strict_precategory namespace ops abbreviation Cat := Precategory_strict_precategory end ops end category