/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.encodable Author: Leonardo de Moura Type class for encodable types. Note that every encodable type is countable. -/ import data.fintype data.list data.sum data.nat data.subtype data.countable open option list nat function structure encodable [class] (A : Type) := (encode : A → nat) (decode : nat → option A) (encodek : ∀ a, decode (encode a) = some a) open encodable definition countable_of_encodable {A : Type} : encodable A → countable A := assume e : encodable A, have inj_encode : injective encode, from λ (a₁ a₂ : A) (h : encode a₁ = encode a₂), assert aux : decode A (encode a₁) = decode A (encode a₂), by rewrite h, by rewrite [*encodek at aux]; exact (option.no_confusion aux (λ e, e)), exists.intro encode inj_encode definition encodable_fintype [instance] {A : Type} [h₁ : fintype A] [h₂ : decidable_eq A] : encodable A := encodable.mk (λ a, find a (elements_of A)) (λ n, nth (elements_of A) n) (λ a, find_nth (fintype.complete a)) definition encodable_nat [instance] : encodable nat := encodable.mk (λ a, a) (λ n, some n) (λ a, rfl) definition encodable_option [instance] {A : Type} [h : encodable A] : encodable (option A) := encodable.mk (λ o, match o with | some a := succ (encode a) | none := 0 end) (λ n, if n = 0 then some none else some (decode A (pred n))) (λ o, begin cases o with a, begin esimp end, begin esimp, rewrite [if_neg !succ_ne_zero, pred_succ, encodable.encodek] end end) section sum variables {A B : Type} variables [h₁ : encodable A] [h₂ : encodable B] include h₁ h₂ definition encode_sum : sum A B → nat | (sum.inl a) := 2 * encode a | (sum.inr b) := 2 * encode b + 1 definition decode_sum (n : nat) : option (sum A B) := if n mod 2 = 0 then match decode A (n div 2) with | some a := some (sum.inl a) | none := none end else match decode B ((n - 1) div 2) with | some b := some (sum.inr b) | none := none end open decidable theorem decode_encode_sum : ∀ s : sum A B, decode_sum (encode_sum s) = some s | (sum.inl a) := assert aux : 2 > 0, from dec_trivial, begin esimp [encode_sum, decode_sum], rewrite [mul_mod_right, if_pos (eq.refl 0), mul_div_cancel_left _ aux, encodable.encodek] end | (sum.inr b) := assert aux₁ : 2 > 0, from dec_trivial, assert aux₂ : 1 mod 2 = 1, by rewrite [modulo_def], assert aux₃ : 1 ≠ 0, from dec_trivial, begin esimp [encode_sum, decode_sum], rewrite [add.comm, add_mul_mod_self_left aux₁, aux₂, if_neg aux₃, add_sub_cancel_left, mul_div_cancel_left _ aux₁, encodable.encodek] end definition encodable_sum [instance] : encodable (sum A B) := encodable.mk (λ s, encode_sum s) (λ n, decode_sum n) (λ s, decode_encode_sum s) end sum section prod variables {A B : Type} variables [h₁ : encodable A] [h₂ : encodable B] include h₁ h₂ definition encode_prod : A × B → nat | (a, b) := mkpair (encode a) (encode b) definition decode_prod (n : nat) : option (A × B) := match unpair n with | (n₁, n₂) := match decode A n₁ with | some a := match decode B n₂ with | some b := some (a, b) | none := none end | none := none end end theorem decode_encode_prod : ∀ p : A × B, decode_prod (encode_prod p) = some p | (a, b) := begin esimp [encode_prod, decode_prod, prod.cases_on], rewrite [unpair_mkpair], esimp, rewrite [*encodable.encodek] end definition encodable_product [instance] : encodable (A × B) := encodable.mk encode_prod decode_prod decode_encode_prod end prod section list variables {A : Type} variables [h : encodable A] include h definition encode_list_core : list A → nat | [] := 0 | (a::l) := mkpair (encode a) (encode_list_core l) theorem encode_list_core_cons (a : A) (l : list A) : encode_list_core (a::l) = mkpair (encode a) (encode_list_core l) := rfl definition encode_list (l : list A) : nat := mkpair (length l) (encode_list_core l) definition decode_list_core : nat → nat → option (list A) | 0 v := some [] | (succ n) v := match unpair v with | (v₁, v₂) := match decode A v₁ with | some a := match decode_list_core n v₂ with | some l := some (a::l) | none := none end | none := none end end theorem decode_list_core_succ (n v : nat) : decode_list_core (succ n) v = match unpair v with | (v₁, v₂) := match decode A v₁ with | some a := match decode_list_core n v₂ with | some l := some (a::l) | none := none end | none := none end end := rfl definition decode_list (n : nat) : option (list A) := match unpair n with | (l, v) := decode_list_core l v end theorem decode_encode_list_core : ∀ l : list A, decode_list_core (length l) (encode_list_core l) = some l | [] := rfl | (a::l) := begin rewrite [encode_list_core_cons, length_cons, add_one (length l), decode_list_core_succ], rewrite [unpair_mkpair], esimp [prod.cases_on], rewrite [decode_encode_list_core l], rewrite [encodable.encodek], end theorem decode_encode_list (l : list A) : decode_list (encode_list l) = some l := begin esimp [encode_list, decode_list], rewrite [unpair_mkpair], esimp [prod.cases_on], apply decode_encode_list_core end definition encodable_list [instance] : encodable (list A) := encodable.mk encode_list decode_list decode_encode_list end list definition encodable_of_left_injection {A B : Type} [h₁ : encodable A] (f : B → A) (finv : A → option B) (linv : ∀ b, finv (f b) = some b) : encodable B := encodable.mk (λ b, encode (f b)) (λ n, match decode A n with | some a := finv a | none := none end) (λ b, begin esimp, rewrite [encodable.encodek], esimp [option.cases_on], rewrite [linv] end) /- Choice function for encodable types and decidable predicates. We provide the following API choose {A : Type} {p : A → Prop} [c : encodable A] [d : decidable_pred p] : (∃ x, p x) → A := choose_spec {A : Type} {p : A → Prop} [c : encodable A] [d : decidable_pred p] (ex : ∃ x, p x) : p (choose ex) := -/ section find_a parameters {A : Type} {p : A → Prop} [c : encodable A] [d : decidable_pred p] include c include d private definition pn (n : nat) : Prop := match decode A n with | some a := p a | none := false end private definition decidable_pn : decidable_pred pn := λ n, match decode A n with | some a := λ e : decode A n = some a, match d a with | decidable.inl t := begin unfold pn, rewrite e, esimp [option.cases_on], exact (decidable.inl t) end | decidable.inr f := begin unfold pn, rewrite e, esimp [option.cases_on], exact (decidable.inr f) end end | none := λ e : decode A n = none, begin unfold pn, rewrite e, esimp [option.cases_on], exact decidable_false end end (eq.refl (decode A n)) private definition ex_pn_of_ex : (∃ x, p x) → (∃ x, pn x) := assume ex, obtain (w : A) (pw : p w), from ex, exists.intro (encode w) begin unfold pn, rewrite [encodek], esimp, exact pw end private definition decode_ne_none_of_pn {n : nat} : pn n → decode A n ≠ none := assume pnn e, begin rewrite [▸ (match decode A n with | some a := p a | none := false end) at pnn], rewrite [e at pnn], esimp [option.cases_on] at pnn, exact (false.elim pnn) end open subtype private definition of_nat (n : nat) : pn n → { a : A | p a } := match decode A n with | some a := λ (e : decode A n = some a), begin unfold pn, rewrite e, esimp [option.cases_on], intro pa, exact (tag a pa) end | none := λ (e : decode A n = none) h, absurd e (decode_ne_none_of_pn h) end (eq.refl (decode A n)) private definition find_a : (∃ x, p x) → {a : A | p a} := assume ex : ∃ x, p x, have exn : ∃ x, pn x, from ex_pn_of_ex ex, let r : nat := @nat.choose pn decidable_pn exn in have pnr : pn r, from @nat.choose_spec pn decidable_pn exn, of_nat r pnr end find_a namespace encodable open subtype definition choose {A : Type} {p : A → Prop} [c : encodable A] [d : decidable_pred p] : (∃ x, p x) → A := assume ex, elt_of (find_a ex) theorem choose_spec {A : Type} {p : A → Prop} [c : encodable A] [d : decidable_pred p] (ex : ∃ x, p x) : p (choose ex) := has_property (find_a ex) theorem axiom_of_choice {A : Type} {B : A → Type} {R : Π x, B x → Prop} [c : Π a, encodable (B a)] [d : ∀ x y, decidable (R x y)] : (∀x, ∃y, R x y) → ∃f, ∀x, R x (f x) := assume H, have H₁ : ∀x, R x (choose (H x)), from take x, choose_spec (H x), exists.intro _ H₁ theorem skolem {A : Type} {B : A → Type} {P : Π x, B x → Prop} [c : Π a, encodable (B a)] [d : ∀ x y, decidable (P x y)] : (∀x, ∃y, P x y) ↔ ∃f, (∀x, P x (f x)) := iff.intro (assume H : (∀x, ∃y, P x y), axiom_of_choice H) (assume H : (∃f, (∀x, P x (f x))), take x, obtain (fw : ∀x, B x) (Hw : ∀x, P x (fw x)), from H, exists.intro (fw x) (Hw x)) end encodable