/- Copyright (c) 2016 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Real inner product spaces. Note: We can enter ⟨v, w⟩ as \. This file overwrites the notation for dependent pairs. -/ import theories.analysis.normed_space theories.analysis.sqrt open nat real classical noncomputable theory structure inner_product_space [class] (V : Type) extends real_vector_space V := (inner : V → V → ℝ) (inner_add_left : ∀ u v w, inner (add u v) w = inner u w + inner v w) (inner_smul_left : ∀ r v w, inner (smul r v) w = r * inner v w) (inner_comm : ∀ v w, inner v w = inner w v) (inner_self_nonneg : ∀ v, inner v v ≥ 0) (eq_zero_of_inner_self_eq_zero : ∀ {v}, inner v v = 0 → v = zero) namespace analysis variables {V : Type} [inner_product_space V] definition inner (v w : V) : ℝ := inner_product_space.inner v w notation `⟨` v `, ` w `⟩` := inner v w proposition inner_comm (v w : V) : ⟨v, w⟩ = ⟨w, v⟩ := inner_product_space.inner_comm v w proposition inner_add_left (u v w : V) : ⟨u + v, w⟩ = ⟨u, w⟩ + ⟨v, w⟩ := inner_product_space.inner_add_left u v w proposition inner_add_right (u v w : V) : ⟨u, v + w⟩ = ⟨u, v⟩ + ⟨u, w⟩ := by rewrite [inner_comm, inner_add_left, inner_comm, inner_comm w] proposition inner_smul_left (r : ℝ) (v w : V) : ⟨r • v, w⟩ = r * ⟨v, w⟩ := inner_product_space.inner_smul_left r v w proposition inner_smul_right (r : ℝ) (v w : V) : ⟨v, r • w⟩ = r * ⟨v, w⟩ := by rewrite [inner_comm, inner_smul_left, inner_comm] proposition inner_self_nonneg (v : V) : ⟨v, v⟩ ≥ 0 := inner_product_space.inner_self_nonneg v proposition eq_zero_of_inner_self_eq_zero {v : V} (H : ⟨v, v⟩ = 0) : v = 0 := inner_product_space.eq_zero_of_inner_self_eq_zero H proposition inner_neg_left (u v : V) : ⟨-u, v⟩ = -⟨u, v⟩ := by rewrite [-neg_one_smul_real, inner_smul_left, -neg_eq_neg_one_mul] proposition inner_neg_right (u v : V) : ⟨u, -v⟩ = -⟨u, v⟩ := by rewrite [inner_comm, inner_neg_left, inner_comm] proposition inner_sub_left (u v w : V) : ⟨u - v, w⟩ = ⟨u, w⟩ - ⟨v, w⟩ := by rewrite [*sub_eq_add_neg, inner_add_left, inner_neg_left] proposition inner_sub_right (u v w : V) : ⟨u, v - w⟩ = ⟨u, v⟩ - ⟨u, w⟩ := by rewrite [*sub_eq_add_neg, inner_add_right, inner_neg_right] proposition inner_zero_left (v : V) : ⟨0, v⟩ = 0 := have (0 : ℝ) • v = 0, from zero_smul v, using this, by rewrite [-this, inner_smul_left, zero_mul] proposition inner_zero_right (v : V) : ⟨v, 0⟩ = 0 := by rewrite [inner_comm, inner_zero_left] definition orthogonal (u v : V) : Prop := ⟨u, v⟩ = 0 infix ` ⊥ `:50 := orthogonal proposition orthogonal_comm {u v : V} (H : u ⊥ v) : v ⊥ u := by unfold orthogonal at *; rewrite [inner_comm, H] /- first, we define norm internally, to show that an inner product space is a normed space -/ private definition ip_norm (v : V) : ℝ := sqrt ⟨v, v⟩ private proposition ip_norm_zero : ip_norm (0 : V) = 0 := by rewrite [↑ip_norm, inner_zero_left, sqrt_zero] private proposition ip_norm_squared (v : V) : (ip_norm v)^2 = ⟨v, v⟩ := sqrt_squared (inner_self_nonneg v) private proposition ip_norm_nonneg (v : V) : ip_norm v ≥ 0 := !sqrt_nonneg private proposition eq_zero_of_ip_norm_eq_zero {v : V} (H : ip_norm v = 0) : v = 0 := have ⟨v, v⟩ = 0, by rewrite [-ip_norm_squared, H, pow_two, zero_mul], eq_zero_of_inner_self_eq_zero this private proposition ip_norm_smul (r : ℝ) (v : V) : ip_norm (r • v) = abs r * ip_norm v := begin rewrite [↑ip_norm, inner_smul_left, inner_smul_right, -mul.assoc], rewrite [sqrt_mul (mul_self_nonneg r) (inner_self_nonneg v), -pow_two, sqrt_squared'] end private proposition ip_norm_pythagorean {u v : V} (ortho : u ⊥ v) : (ip_norm (u + v))^2 = (ip_norm u)^2 + (ip_norm v)^2 := by rewrite [↑orthogonal at ortho, *ip_norm_squared, inner_add_right, *inner_add_left, inner_comm v u, *ortho, zero_add, add_zero] private definition ip_proj_on (u : V) {v : V} (H : v ≠ 0) : V := (⟨u, v⟩ / (ip_norm v)^2) • v private proposition ip_proj_on_orthogonal (u : V) {v : V} (H : v ≠ 0) : ip_proj_on u H ⊥ (u - ip_proj_on u H) := begin rewrite [↑ip_proj_on, ↑orthogonal, inner_sub_right, +inner_smul_left, inner_smul_right], rewrite [ip_norm_squared at {3}], rewrite [div_mul_cancel _ (assume H', H (eq_zero_of_inner_self_eq_zero H'))], rewrite [inner_comm v u, sub_self] end private proposition ip_norm_proj_on_eq (u : V) {v : V} (H : v ≠ 0) : ip_norm (ip_proj_on u H) = abs ⟨u, v⟩ / ip_norm v := have H1 : ip_norm v ≠ 0, from assume H', H (eq_zero_of_ip_norm_eq_zero H'), begin+ rewrite [↑ip_proj_on, ip_norm_smul, abs_div, abs_of_nonneg (squared_nonneg (ip_norm v)), pow_two], rewrite [div_mul_eq_mul_div, -div_mul_div, div_self H1, mul_one] end private proposition ip_norm_squared_pythagorean (u : V) {v : V} (H : v ≠ 0) : (ip_norm u)^2 = (ip_norm (u - ip_proj_on u H))^2 + (ip_norm (ip_proj_on u H))^2 := calc (ip_norm u)^2 = (ip_norm (u - ip_proj_on u H + ip_proj_on u H))^2 : sub_add_cancel ... = (ip_norm (u - ip_proj_on u H))^2 + (ip_norm (ip_proj_on u H))^2 : ip_norm_pythagorean (orthogonal_comm (ip_proj_on_orthogonal u H)) private proposition ip_norm_proj_on_le (u : V) {v : V} (H : v ≠ 0) : ip_norm (ip_proj_on u H) ≤ ip_norm u := have (ip_norm u)^2 ≥ (ip_norm (ip_proj_on u H))^2, begin rewrite [ip_norm_squared_pythagorean u H], apply le_add_of_nonneg_left (squared_nonneg (ip_norm (u - ip_proj_on u H))) end, le_of_squared_le_squared !ip_norm_nonneg this private proposition ip_cauchy_schwartz (u v : V) : abs ⟨u, v⟩ ≤ ip_norm u * ip_norm v := by_cases (suppose v = (0 : V), begin rewrite [this, inner_zero_right, abs_zero, ip_norm_zero, mul_zero], exact le.refl (0 : ℝ) end) (assume vnz : v ≠ 0, have ip_norm v ≠ 0, from assume H, vnz (eq_zero_of_ip_norm_eq_zero H), have ip_norm v > 0, from lt_of_le_of_ne !sqrt_nonneg (ne.symm this), using this, begin note H := ip_norm_proj_on_le u vnz, rewrite [ip_norm_proj_on_eq u vnz at H], exact le_mul_of_div_le this H end) private proposition ip_cauchy_schwartz' (u v : V) : ⟨u, v⟩ ≤ ip_norm u * ip_norm v := le.trans !le_abs_self !ip_cauchy_schwartz private proposition ip_norm_triangle (u v : V) : ip_norm (u + v) ≤ ip_norm u + ip_norm v := have H : ⟨u, v⟩ ≤ ip_norm u * ip_norm v, from ip_cauchy_schwartz' u v, have (ip_norm (u + v))^2 ≤ (ip_norm u + ip_norm v)^2, from calc (ip_norm (u + v))^2 = (ip_norm u)^2 + (ip_norm v)^2 + ⟨u, v⟩ + ⟨u, v⟩ : by rewrite [↑ip_norm, *sqrt_squared !inner_self_nonneg, inner_add_left, *inner_add_right, *inner_comm v u, -add.assoc, -*add.right_comm _ _ ⟨v, v⟩] ... ≤ (ip_norm u)^2 + (ip_norm v)^2 + ip_norm u * ip_norm v + ⟨u, v⟩ : add_le_add_right (add_le_add_left H _) _ ... ≤ (ip_norm u)^2 + (ip_norm v)^2 + ip_norm u * ip_norm v + ip_norm u * ip_norm v : add_le_add_left H _ ... = (ip_norm u + ip_norm v)^2 : by rewrite [*pow_two, right_distrib, *left_distrib, -add.assoc, *add.right_comm _ (ip_norm v * ip_norm v), mul.comm (ip_norm v) (ip_norm u)], le_of_squared_le_squared (add_nonneg !ip_norm_nonneg !ip_norm_nonneg) this definition inner_product_space.to_normed_space [trans_instance] : normed_vector_space V := ⦃ normed_vector_space, _inst_1, norm := ip_norm, norm_zero := ip_norm_zero, eq_zero_of_norm_eq_zero := @eq_zero_of_ip_norm_eq_zero V _, norm_triangle := ip_norm_triangle, norm_smul := ip_norm_smul ⦄ /- now we restate the new theorems using the norm notation -/ proposition norm_squared (v : V) : ∥ v ∥^2 = ⟨v, v⟩ := ip_norm_squared v proposition norm_pythagorean {u v : V} (ortho : u ⊥ v) : ∥ u + v ∥^2 = ∥ u ∥^2 + ∥ v ∥^2 := ip_norm_pythagorean ortho definition proj_on (u : V) {v : V} (H : v ≠ 0) : V := (⟨u, v⟩ / ∥ v ∥^2) • v proposition proj_on_orthogonal (u : V) {v : V} (H : v ≠ 0) : proj_on u H ⊥ (u - proj_on u H) := ip_proj_on_orthogonal u H proposition norm_proj_on_eq (u : V) {v : V} (H : v ≠ 0) : ∥ proj_on u H ∥ = abs ⟨u, v⟩ / ∥ v ∥ := ip_norm_proj_on_eq u H proposition norm_squared_pythagorean (u : V) {v : V} (H : v ≠ 0) : ∥ u ∥^2 = ∥ u - proj_on u H ∥^2 + ∥ proj_on u H ∥^2 := ip_norm_squared_pythagorean u H proposition norm_proj_on_le (u : V) {v : V} (H : v ≠ 0) : ∥ proj_on u H ∥ ≤ ∥ u ∥ := ip_norm_proj_on_le u H theorem cauchy_schwartz (u v : V) : abs ⟨u, v⟩ ≤ ∥ u ∥ * ∥ v ∥ := ip_cauchy_schwartz u v theorem cauchy_schwartz' (u v : V) : ⟨u, v⟩ ≤ ∥ u ∥ * ∥ v ∥ := ip_cauchy_schwartz' u v theorem eq_proj_on_cauchy_schwartz {u v : V} (H : v ≠ 0) (H₁ : abs ⟨u, v⟩ = ∥ u ∥ * ∥ v ∥) : u = proj_on u H := have ∥ v ∥ ≠ 0, from assume H', H (eq_zero_of_norm_eq_zero H'), have ∥ u ∥ = ∥ proj_on u H ∥, by rewrite [norm_proj_on_eq, H₁, mul_div_cancel _ this], have ∥ u - proj_on u H ∥^2 + ∥ u ∥^2 = 0 + ∥ u ∥^2, by rewrite [zero_add, norm_squared_pythagorean u H at {2}, this], have ∥ u - proj_on u H ∥^2 = 0, from eq_of_add_eq_add_right this, show u = proj_on u H, from eq_of_sub_eq_zero (eq_zero_of_norm_eq_zero (eq_zero_of_squared_eq_zero this)) end analysis